# Verification of Security Protocols

Véronique Cortier<sup>1</sup>

January 18th, 2009

# VMCAI'09

<sup>1</sup>LORIA, CNRS - INRIA Cassis project, Nancy Universités 🕨 🚛 🖉 🔍

Context Credit Card Payment Protocol Other examples

# Context : cryptographic protocols

Cryptographic protocols are widely used in everyday life.

### Credit card payment











# Electronic purse

(¬¬¬¬¬)

Formal models Adding equational theories Towards more guarantees Context Credit Card Payment Protocol Other examples

### On the web



- HTTPS, i.e. the SSL protocol for ensuring confidentiality

- password-based authentication

Formal models Adding equational theories Towards more guarantees Context Credit Card Payment Protocol Other examples

# Credit Card payment



- It is a real card?
- Is the pin code protected?

A.

Context Credit Card Payment Protocol Other examples

# Example : Credit Card Payment Protocol



- The waiter introduces the credit card.
- The waiter enters the amount *m* of the transaction on the terminal.
- The terminal authenticates the card.
- The customer enters his secret code. If the amount *m* is greater than 100 euros (and in only 20% of the cases)
  - The terminal asks the bank for authentication of the card.
  - The bank provides authentication.

A (1) > A (2)

Context Credit Card Payment Protocol Other examples

# More details

4 actors : Bank, Customer, Card and Terminal.

Bank owns

- a signing key  $K_B^{-1}$ , secret,
- a verification key  $K_B$ , public,
- a secret symmetric key for each credit card K<sub>CB</sub>, secret.

Card owns

- Data : last name, first name, card's number, expiration date,
- Signature's Value  $VS = {hash(Data)}_{K_{p}^{-1}}$ ,
- secret key K<sub>CB</sub>.

Terminal owns the verification key  $K_B$  for bank's signatures.

A B > A B >

Context Credit Card Payment Protocol Other examples

# Credit card payment Protocol (in short)

The terminal reads the card :

1. Ca 
$$\rightarrow$$
 T : Data, {hash(Data)}<sub>K\_B</sub>^{-1}

Image: A math a math

Context Credit Card Payment Protocol Other examples

# Credit card payment Protocol (in short)

The terminal reads the card :

```
1. Ca \rightarrow T : Data, {hash(Data)}<sub>K_R^{-1}</sub>
```

The terminal asks for the secret code :

2.  $T \rightarrow Cu$ : secret code? 3.  $Cu \rightarrow Ca$ : 1234 4.  $Ca \rightarrow T$ : ok

▲ 同 ▶ → 三 ▶

Context Credit Card Payment Protocol Other examples

# Credit card payment Protocol (in short)

The terminal reads the card :

1. Ca  $\rightarrow$  T : Data, {hash(Data)}<sub>K\_R^{-1}</sub>

The terminal asks for the secret code :

2.  $T \rightarrow Cu$ : secret code? 3.  $Cu \rightarrow Ca$ : 1234 4.  $Ca \rightarrow T$ : ok

The terminal calls the bank :

5. 
$$T \rightarrow B$$
: auth?  
6.  $B \rightarrow T$ :  $N_b$   
7.  $T \rightarrow Ca$ :  $N_b$   
8.  $Ca \rightarrow T$ :  $\{N_b\}_{K_{CB}}$   
9.  $T \rightarrow B$ :  $\{N_b\}_{K_{CB}}$   
10.  $B \rightarrow T$ :  $ok$ 

Context Credit Card Payment Protocol Other examples

# Some flaws

### The security was initially ensured by :

- the cards were very difficult to reproduce,
- the protocol and the keys were secret.

### But

- cryptographic flaw : 320 bits keys can be broken (1988),
- logical flaw : no link between the secret code and the authentication of the card,
- fake cards can be build.

Context Credit Card Payment Protocol Other examples

# Some flaws

### The security was initially ensured by :

- the cards were very difficult to reproduce,
- the protocol and the keys were secret.

### But

- cryptographic flaw : 320 bits keys can be broken (1988),
- logical flaw : no link between the secret code and the authentication of the card,
- fake cards can be build.

 $\rightarrow$  "YesCard" build by Serge Humpich (1998 in France).

Context Credit Card Payment Protocol Other examples

### How does the "YesCard" work?

### Logical flaw

- 1. Ca  $\rightarrow T$  : Data, {hash(Data)}<sub>K\_2</sub><sup>-1</sup>
- 2.  $T \rightarrow Ca$  : secret code?
- 3.  $Cu \rightarrow Ca$  : 1234
- 4. Ca  $\rightarrow$  T : ok

・ロト ・同ト ・ヨト ・ヨト

э

Context Credit Card Payment Protocol Other examples

### How does the "YesCard" work?

### Logical flaw

- 1. Ca  $\rightarrow T$  : Data, {hash(Data)}<sub>K\_2</sub><sup>-1</sup>
- 2.  $T \rightarrow Ca$  : secret code?
- 3.  $Cu \rightarrow Ca'$  : 2345
- 4.  $Ca' \rightarrow T$  : ok

э

Context Credit Card Payment Protocol Other examples

### How does the "YesCard" work?

### Logical flaw

1.  $Ca \rightarrow T$  : Data,  $\{hash(Data)\}_{K_B^{-1}}$ 2.  $T \rightarrow Ca$  : secret code? 3.  $Cu \rightarrow Ca'$  : 2345 4.  $Ca' \rightarrow T$  : ok

Remark : there is always somebody to debit.

 $\rightarrow$  creation of a fake card

Image: A = A

Context Credit Card Payment Protocol Other examples

### How does the "YesCard" work?

### Logical flaw

1.  $Ca \rightarrow T$  : Data,  $\{hash(Data)\}_{K_B^{-1}}$ 2.  $T \rightarrow Ca$  : secret code? 3.  $Cu \rightarrow Ca'$  : 2345 4.  $Ca' \rightarrow T$  : ok

### Remark : there is always somebody to debit.

 $\rightarrow$  creation of a fake card

1. 
$$Ca' \rightarrow T$$
 : XXX,  $\{hash(XXX)\}_{K_B^{-1}}$   
2.  $T \rightarrow Cu$  : secret code?  
3.  $Cu \rightarrow Ca'$  : 0000  
4.  $Ca' \rightarrow T$  :  $ok$ 

Image: A = A

Context Credit Card Payment Protocol Other examples

### Electronic signature



- authenticates the signer
- should be verifiable by anyone

ensures non-repudiation(I never signed that message!)

Image: A = A

Formal models Adding equational theories Towards more guarantees Context Credit Card Payment Protocol Other examples

# Pay-per-view devices



- Checks your identity
- You should be granted access to the movie only once
- You should not be able to broadcast the movie to other people

◆ 同 ▶ ◆ 三

Formal models Adding equational theories Towards more guarantees Context Credit Card Payment Protocol Other examples

# Electronic voting



- The result corresponds to the votes.
- Each vote is confidential.
- No partial result is leaked before the end of the election
- Only voters can vote and at most once
- Coercion resistance

Formal models Adding equational theories Towards more guarantees Context Credit Card Payment Protocol Other examples

### Electronic purse



- It should not possible to add money without paying.
- It should not be possible to create fake electronic purse.

Formal models Adding equational theories Towards more guarantees Context Credit Card Payment Protocol Other examples

### Secure databases

| Patients | Social security<br>number | Diseases    | Treatments |
|----------|---------------------------|-------------|------------|
| Smith    | 123 - 45 - 6789           | Flu         |            |
| Smith    | 123 - 45 - 6789           | Arthritis   |            |
| Williams | 789 - 56 - 1234           | Dehydration |            |
| Johnson  | 012 - 34 - 5678           | Arthritis   |            |

- Authorized persons have access only to a partial view of the database (different for doctors, nurses, researchers, ...)
- Data may be exchanged between e.g. doctors, hospitals, medical laboratories.
- Data are regularly updated.

Context Credit Card Payment Protocol Other examples

# Security goals

Cryptographic protocols aim at

- preserving confidentiality of data (e.g. pin code, medical files, ...)
- ensuring authenticity (Are you really talking to your bank??)
- ensuring anonymous communications (for e-voting protocols, ...)
- protecting against repudiation (I never sent this message ! !)

• ...

 $\Rightarrow$  Cryptographic protocols vary depending on the application.

Formal models Adding equational theories Towards more guarantees Context Credit Card Payment Protocol Other examples

# Difficulty

Presence of an attacker

- may read every message sent on the net,
- may intercept and send new messages.



 $\Rightarrow$  The system is infinitely branching

Formal models Adding equational theories Towards more guarantees Context Credit Card Payment Protocol Other examples

# Outline of the talk



- Introduction
- Context
- Credit Card Payment Protocol
- Other examples



### Formal models

- Intruder
- Protocol
- Solving constraint systems
- A brief survey of results
- 3

### Adding equational theories

- Motivation
- Intruder problem
- Some results
- 4 Towards more guarantees
  - Cryptographic models
  - Linking Formal and cryptographic models
  - Conclusion

Intruder Protocol Solving constraint systems A brief survey of results

### Motivation : Cryptography does not suffice to ensure security!

# $\begin{array}{l} \mbox{Example : Commutative encryption (RSA)} \\ \mbox{ {pin : 3443}}_{k_{alice}} \end{array}$





< (□ )

Intruder Protocol Solving constraint systems A brief survey of results

### Motivation : Cryptography does not suffice to ensure security !

Example : Commutative encryption (RSA)  $\begin{cases} \{pin : 3443\}_{k_{alice}} \\ \{pin : 3443\}_{k_{alice}} \} \end{cases}$ 



< 6 >

Intruder Protocol Solving constraint systems A brief survey of results

### Motivation : Cryptography does not suffice to ensure security!



▲ 同 ▶ → 三 ▶

Intruder Protocol Solving constraint systems A brief survey of results

### Motivation : Cryptography does not suffice to ensure security!





A 1

 $\rightarrow$  It does not work ! (Authentication problem)

Intruder Protocol Solving constraint systems A brief survey of results

### Motivation : Cryptography does not suffice to ensure security !

Example : Commutative encryption (RSA)  $\frac{\{\text{pin}: 3443\}_{k_{\text{alice}}}}{\{\{\text{pin}: 3443\}_{k_{\text{alice}}}\}_{k_{\text{bob}}}}$ 



 $\rightarrow$  It does not work ! (Authentication problem)



$$\frac{\{\text{pin}: 3443\}_{k_{\text{alice}}}}{\{\{\text{pin}: 3443\}_{k_{\text{alice}}}\}_{k_{\text{intruder}}}}$$



Intruder Protocol Solving constraint systems A brief survey of results

# Messages

### Messages are abstracted by terms.

Agents :  $a, b, \ldots$ Nonces :  $n_1, n_2, \ldots$ Keys :  $k_1, k_2, \ldots$ Cyphertext :  $\{m\}_k$ Concatenation :  $\langle m_1, m_2 \rangle$ 

Example : The message  $\{A, N_a\}_K$  is represented by :



Image: A image: A

Intruder Protocol Solving constraint systems A brief survey of results

### Intruder abilities

### **Composition rules**

$$\frac{T \vdash u \quad T \vdash v}{T \vdash \langle u, v \rangle} \quad \frac{T \vdash u \quad T \vdash v}{T \vdash \operatorname{enc}(u, v)} \quad \frac{T \vdash u \quad T \vdash v}{T \vdash \operatorname{enca}(u, v)}$$



イロト イポト イヨト イヨト

э

Intruder Protocol Solving constraint systems A brief survey of results

### Intruder abilities

### **Composition rules**

$$\frac{T \vdash u \quad T \vdash v}{T \vdash \langle u, v \rangle} \quad \frac{T \vdash u \quad T \vdash v}{T \vdash \operatorname{enc}(u, v)} \quad \frac{T \vdash u \quad T \vdash v}{T \vdash \operatorname{enca}(u, v)}$$



### **Decomposition rules**

$$\frac{1}{T \vdash u} u \in T \qquad \frac{T \vdash \langle u, v \rangle}{T \vdash u} \qquad \frac{T \vdash \langle u, v \rangle}{T \vdash v}$$

$$\frac{T \vdash \operatorname{enc}(u, v) \quad T \vdash v}{T \vdash u} \qquad \frac{T \vdash \operatorname{enca}(u, \operatorname{pub}(v)) \quad T \vdash \operatorname{priv}(v)}{T \vdash u}$$

(日) (同) (三) (三)

Intruder Protocol Solving constraint systems A brief survey of results

# Intruder abilities

### **Composition rules**

$$\frac{T \vdash u \quad T \vdash v}{T \vdash \langle u, v \rangle} \quad \frac{T \vdash u \quad T \vdash v}{T \vdash \operatorname{enc}(u, v)} \quad \frac{T \vdash u \quad T \vdash v}{T \vdash \operatorname{enca}(u, v)}$$



### **Decomposition rules**

$$\frac{}{T \vdash u} u \in T \qquad \frac{T \vdash \langle u, v \rangle}{T \vdash u} \qquad \frac{T \vdash \langle u, v \rangle}{T \vdash v}$$

$$\frac{T \vdash \operatorname{enc}(u, v) \quad T \vdash v}{T \vdash u} \qquad \frac{T \vdash \operatorname{enca}(u, \operatorname{pub}(v)) \quad T \vdash \operatorname{priv}(v)}{T \vdash u}$$

### Deducibility relation

A term u is deducible from a set of terms T, denoted by  $T \vdash u$ , if there exists a prooftree witnessing this fact.

Intruder Protocol Solving constraint systems A brief survey of results

# A simple protocol



 $\langle \mathsf{Bob}, \mathsf{k} \rangle$ 

 $\langle Alice, enc(s, k) \rangle$ 



<ロ> <同> <同> < 回> < 回>

Intruder Protocol Solving constraint systems A brief survey of results

# A simple protocol





Intruder Protocol Solving constraint systems A brief survey of results

# A simple protocol



Answer : Of course, Yes !

Image: A math a math

э

Intruder Protocol Solving constraint systems A brief survey of results

# Decision of the intruder problem

### Given A set of messages S and a message m Question Can the intruder learn m from S that is $S \vdash m$ ?

This problem is decidable in polynomial time

< 4 → < 三
Intruder Protocol Solving constraint systems A brief survey of results

## Decision of the intruder problem

Given A set of messages S and a message m Question Can the intruder learn m from S that is  $S \vdash m$ ?

This problem is decidable in polynomial time

#### Lemma (Locality)

If there is a proof of  $S \vdash m$  then there is a proof that only uses the subterms of S and m.

Image: A = A

Intruder Protocol Solving constraint systems A brief survey of results

# Protocol description

Protocol :

$$\begin{array}{rcl} A \to B & : & \{ \text{pin} \}_{k_a} \\ B \to A & : & \{ \{ \text{pin} \}_{k_a} \}_{k_b} \\ A \to B & : & \{ \text{pin} \}_{k_b} \end{array}$$

A protocol is a finite set of roles :

role Π(1) corresponding to the 1<sup>st</sup> participant played by a talking to b :

$$\begin{array}{rcl} \text{init} & \stackrel{k_a}{\to} & \texttt{enc}(\texttt{pin}, k_a) \\ \texttt{enc}(\textbf{x}, k_a) & \to & \textbf{x}. \end{array}$$

< 4 → < 三

Intruder Protocol Solving constraint systems A brief survey of results

# Protocol description

Protocol :

$$\begin{array}{rcl} A \rightarrow B & : & \{ \text{pin} \}_{k_a} \\ B \rightarrow A & : & \{ \{ \text{pin} \}_{k_a} \}_{k_b} \\ A \rightarrow B & : & \{ \text{pin} \}_{k_b} \end{array}$$

A protocol is a finite set of roles :

role Π(1) corresponding to the 1<sup>st</sup> participant played by a talking to b :

$$\begin{array}{rcl} \text{init} & \stackrel{k_a}{\to} & \text{enc}(\text{pin}, k_a) \\ \text{enc}(\mathbf{x}, k_a) & \to & \mathbf{x}. \end{array}$$

 role Π(2) corresponding to the 2<sup>nd</sup> participant played by b with a :

$$\begin{array}{rcl} \mathbf{x} & \stackrel{k_b}{\to} & \mathrm{enc}(\mathbf{x}, k_b) \\ \mathrm{enc}(\mathbf{y}, k_b) & \to & \mathrm{stop.} \end{array}$$

Intruder Protocol Solving constraint systems A brief survey of results

[Millen et al]

Secrecy via constraint solving

Constraint systems are used to specify secrecy preservation under a particular, finite scenario.

# ScenarioConstraint System $\operatorname{rcv}(u_1) \xrightarrow{N_1} \operatorname{snd}(v_1)$ $T_0 \Vdash u_1$ $\operatorname{rcv}(u_2) \xrightarrow{N_2} \operatorname{snd}(v_2)$ $\mathcal{C} = \begin{cases} T_0 \Vdash u_1 \\ T_0, v_1 \Vdash u_2 \\ \cdots \\ T_0, v_1 \Vdash v_2 \\ \cdots \\ T_0, v_1, \cdots, v_n \Vdash s \end{cases}$

where  $T_0$  is the initial knowledge of the attacker.

Remark : Constraint Systems may be used more generally for trace-based properties, e.g. authentication.

Intruder Protocol Solving constraint systems A brief survey of results

## Secrecy via constraint solving

Constraint systems are used to specify secrecy preservation under a particular, finite scenario.

#### Scenario

#### **Constraint System**

[Millen et al]

 $\begin{aligned} \operatorname{rcv}(u_1) &\xrightarrow{N_1} \operatorname{snd}(v_1) \\ \operatorname{rcv}(u_2) &\xrightarrow{N_2} \operatorname{snd}(v_2) \\ & \dots \\ \operatorname{rcv}(u_n) &\xrightarrow{N_n} \operatorname{snd}(v_n) \end{aligned} \qquad \mathcal{C} = \begin{cases} T_0 \Vdash u_1 \\ T_0, v_1 \Vdash u_2 \\ & \dots \\ & T_0, v_1, \dots, v_n \Vdash s \end{cases}$ 

where  $T_0$  is the initial knowledge of the attacker.

#### Solution of a constraint system A substitution $\sigma$ such that for every $T \Vdash u \in C$ , $u\sigma$ is deducible from $T\sigma$ , that is $u\sigma \vdash T\sigma$ . Véronique Cortier Verification of Security Protocols

Intruder Protocol Solving constraint systems A brief survey of results

#### Example of a system constraint

$$\begin{array}{rcl} A \to B & : & \{ {\rm pin} \}_{k_a} \\ B \to A & : & \{ \{ {\rm pin} \}_{k_a} \}_{k_b} & \text{and the attacker initially knows } T_0 = \{ {\rm init} \}. \\ A \to B & : & \{ {\rm pin} \}_{k_b} \end{array}$$

One possible associated constraint system is :

$$\mathcal{C} = \begin{cases} \{\text{init}\} \Vdash \text{init} \\ \{\text{init}, \{\text{pin}\}_{k_a}\} \Vdash \{\text{x}\}_{k_a} \\ \{\text{init}, \{\text{pin}\}_{k_a}, x\} \Vdash \text{pin} \end{cases}$$

Is there a solution?

(日) (同) (三) (三)

Intruder Protocol Solving constraint systems A brief survey of results

#### Example of a system constraint

$$\begin{array}{rcl} A \to B & : & \{ {\rm pin} \}_{k_a} \\ B \to A & : & \{ \{ {\rm pin} \}_{k_a} \}_{k_b} & \text{and the attacker initially knows } T_0 = \{ {\rm init} \}. \\ A \to B & : & \{ {\rm pin} \}_{k_b} \end{array}$$

One possible associated constraint system is :

$$\mathcal{C} = \begin{cases} \{\text{init}\} \Vdash \text{init} \\ \{\text{init}, \{\text{pin}\}_{k_a}\} \Vdash \{\text{x}\}_{k_a} \\ \{\text{init}, \{\text{pin}\}_{k_a}, x\} \Vdash \text{pin} \end{cases}$$

Is there a solution?

Of course yes, simply consider x = pin !

< D > < P > < P > < P >

Intruder Protocol Solving constraint systems A brief survey of results

#### How to solve constraint system?

Given 
$$C = \begin{cases} T_0 \Vdash u_1 \\ T_0, v_1 \Vdash u_2 \\ \cdots \\ T_0, v_1, \cdots, v_n \Vdash u_{n+1} \end{cases}$$

Question Is there a solution  $\sigma$  of C?

< D > < A > < B >

Intruder Protocol Solving constraint systems A brief survey of results

#### An easy case : "solved constraint systems"

Given 
$$C = \begin{cases} T_0 \Vdash x_1 \\ T_0, v_1 \Vdash x_2 \\ \dots \\ T_0, v_1, \dots, v_n \Vdash x_{n+1} \end{cases}$$

Question Is there a solution  $\sigma$  of C?

(日) (同) (三) (三)

Intruder Protocol Solving constraint systems A brief survey of results

#### An easy case : "solved constraint systems"

Given 
$$C = \begin{cases} T_0 \Vdash x_1 \\ T_0, v_1 \Vdash x_2 \\ \dots \\ T_0, v_1, \dots, v_n \Vdash x_{n+1} \end{cases}$$

Question Is there a solution  $\sigma$  of C?

Of course yes! Consider e.g.  $\sigma(x_1) = \cdots = \sigma(x_{n+1}) = t \in T_0$ .

Image: A = A

Solving constraint systems

Decision procedure [Millen / Comon-Lundh]

Goal : Transformation of the constraints in order to obtain a solved constraint system.



 $\mathcal{C}$  has a solution iff  $\mathcal{C} \rightsquigarrow \mathcal{C}'$  with  $\mathcal{C}'$  in solved form.

★ ∃ →

Intruder Protocol Solving constraint systems A brief survey of results

#### Intruder step

#### The intruder can built messages

$$\begin{array}{cccc} R_5: & \mathcal{C} \land T \Vdash f(u,v) & \rightsquigarrow & \mathcal{C} \land T \Vdash u \land T \Vdash v \\ & \text{for } f \in \{\langle\rangle, \text{enc, enca}\} \end{array}$$

Intruder Protocol Solving constraint systems A brief survey of results

#### Intruder step

#### The intruder can built messages

$$\begin{array}{cccc} R_5: & \mathcal{C} \land T \Vdash f(u,v) & \rightsquigarrow & \mathcal{C} \land T \Vdash u \land T \Vdash v \\ & \text{for } f \in \{\langle\rangle, \texttt{enc}, \texttt{enca}\} \end{array}$$

#### Example :

$$a, k \Vdash \operatorname{enc}(\langle x, y \rangle, k) \longrightarrow a, k \Vdash x$$
  
 $a, k \Vdash y$ 

(日) (同) (三) (

Intruder Protocol Solving constraint systems A brief survey of results

## Eliminating redundancies

 $k \Vdash x$  $k, \operatorname{enc}(s, x) \Vdash s$ 

The constraint  $enc(s, x) \Vdash s$  will be satisfied as soon as  $k \Vdash x$  is satisfied.

Image: A math a math

Intruder Protocol Solving constraint systems A brief survey of results

## Eliminating redundancies

 $k \Vdash x$  $k, \operatorname{enc}(s, x) \Vdash s$ 

The constraint  $enc(s, x) \Vdash s$  will be satisfied as soon as  $k \Vdash x$  is satisfied.

 $R_1: \mathcal{C} \land T \Vdash u \rightsquigarrow \mathcal{C} \quad \text{if } T \cup \{x \mid T' \Vdash x \in \mathcal{C}, T' \subsetneq T\} \vdash u$ 

(日) (同) (三) (三)

Intruder Protocol **Solving constraint systems** A brief survey of results

#### Unsolvable constraints

$$R_4: \mathcal{C} \land T \Vdash u \rightsquigarrow \bot \qquad \text{if } \operatorname{var}(T, u) = \emptyset \text{ and } T \not\vdash u$$

#### Example :

 $a, \operatorname{enc}(s, k) \Vdash s \quad \rightsquigarrow \quad \bot$ 

(日) (同) (三) (三)

э

Intruder Protocol Solving constraint systems A brief survey of results

# Guessing equalities

• Example : k, enc(enc(x, k'), k)  $\Vdash$  enc(a, k')

$$R_2: \mathcal{C} \land T \Vdash u \rightsquigarrow_{\sigma} \mathcal{C}\sigma \land T\sigma \Vdash u\sigma \qquad u' \in st(T)$$
  
if  $\sigma = mgu(u, u'), u, u' \notin \mathcal{X}, u \neq u'$ 

(日) (同) (三) (三)

Intruder Protocol Solving constraint systems A brief survey of results

# Guessing equalities

• Example : k, enc(enc(x, k'), k)  $\Vdash$  enc(a, k')

$$R_2: \mathcal{C} \land T \Vdash u \rightsquigarrow_{\sigma} \mathcal{C}\sigma \land T\sigma \Vdash u\sigma \qquad u' \in st(T)$$
  
if  $\sigma = mgu(u, u'), u, u' \notin \mathcal{X}, u \neq u'$ 

Solution Example :  $enc(s, \langle a, x \rangle), enc(\langle y, b \rangle, k), k \Vdash s$ 

$$R_3: \mathcal{C} \land T \Vdash v \rightsquigarrow_{\sigma} \mathcal{C}\sigma \land T\sigma \Vdash v\sigma \qquad u, u' \in st(T)$$
  
if  $\sigma = mgu(u, u'), u, u' \notin \mathcal{X}, u \neq u'$ 

(日) (同) (三) (三)

Intruder Protocol Solving constraint systems A brief survey of results

#### NP-procedure for solving constraint systems



#### Theorem

- C has a solution iff  $C \rightsquigarrow C'$  with C' in solved form.
- $\rightsquigarrow$  is terminating in polynomial time.

Intruder Protocol Solving constraint systems A brief survey of results

## What formal methods allow to do?

• In general, secrecy preservation is undecidable.

< D > < A > < B >

# What formal methods allow to do?

- In general, secrecy preservation is undecidable.
- For a bounded number of sessions, secrecy is co-NP-complete [RusinowitchTuruani CSFW01]
  → several tools for detecting attacks (Casper, Avispa platform...)

< □ > < □ >

# What formal methods allow to do?

- In general, secrecy preservation is undecidable.
- For a bounded number of sessions, secrecy is co-NP-complete [RusinowitchTuruani CSFW01]
  → several tools for detecting attacks (Casper, Avispa platform...)
- For an unbounded number of sessions
  - for one-copy protocols, secrecy is DEXPTIME-complete [CortierComon RTA03] [SeildVerma LPAR04]
  - for message-length bounded protocols, secrecy is DEXPTIME-complete [Durgin et al FMSP99] [Chevalier et al CSL03]
  - $\rightarrow$  some tools for proving security (ProVerif, EVA Platform)

< fi> < fi> < i ≥ </p>

Intruder Protocol Solving constraint systems A brief survey of results

## Example of tool : Avispa Platform



Véronique Cortier

#### Collaborators

- LORIA, France
- DIST, Italy
- ETHZ, Switzerland
- Siemens, Germany

35/59

# Outline of the talk



Introduction

- Context
- Credit Card Payment Protocol
- Other examples



#### Formal models

- Intruder
- Protocol
- Solving constraint systems
- A brief survey of results

#### Adding equational theories

- Motivation
- Intruder problem
- Some results
- - Towards more guarantees
  - Cryptographic models
  - Linking Formal and cryptographic models
  - Conclusion

Motivation Intruder problem Some results

# Motivation

Back to our running example :

 $\begin{array}{rcl} A \rightarrow B & : & \{ \text{pin} \}_{k_a} \\ B \rightarrow A & : & \{ \{ \text{pin} \}_{k_a} \}_{k_b} \\ A \rightarrow B & : & \{ \text{pin} \}_{k_b} \end{array}$ 

We need the equation for the commutativity of encryption

 $\{\{z\}_x\}_y = \{\{z\}_y\}_x$ 

(4月) (4日) (4日)

Motivation Intruder problem Some results

#### Some other examples

#### Encryption-Decryption theory

$$\mathsf{dec}(\mathsf{enc}(x,y),y) = x \quad \pi_1(\langle x,y\rangle) = x \quad \pi_2(\langle x,y\rangle) = y$$

#### EXclusive Or

$$\begin{array}{rcl} x \oplus (y \oplus z) &=& z & x \oplus y &=& y \oplus x \\ x \oplus x &=& 0 & x \oplus 0 &=& x \end{array}$$

#### Diffie-Hellmann

$$\exp(\exp(z,x),y) = \exp(\exp(z,y),x)$$

Motivation Intruder problem Some results

#### E-voting protocols





 $V \rightarrow A$ : sign(blind(vote, r), V)  $A \rightarrow V$ : sign(blind(vote, r), A)

Voting phase :

. . .

 $V \rightarrow C$ : sign(vote, A)

- 4 同 6 4 日 6 4 日 6

Motivation Intruder problem Some results

## Equational theory for blind signatures

[Kremer Ryan 05]

$$checksign(sign(x, y), pk(y)) = x$$
  
unblind(blind(x, y), y) = x  
unblind(sign(blind(x, y), z), y) = sign(x, z)

▲ 同 ▶ → 三 ▶

-

Motivation Intruder problem Some results

# Deduction

$$\frac{}{T\vdash_{\boldsymbol{E}} M} M \in T \qquad \frac{T\vdash_{\boldsymbol{E}} M_1 \cdots T\vdash_{\boldsymbol{E}} M_k}{T\vdash_{\boldsymbol{E}} f(M_1,\ldots,M_k)} f \in \Sigma$$

$$\frac{T\vdash M}{T\vdash M'}M=_{\boldsymbol{E}}M'$$

<ロ> <同> <同> < 回> < 回>

æ

Motivation Intruder problem Some results

## Deduction

-

$$\frac{T \vdash_{\boldsymbol{E}} M}{T \vdash_{\boldsymbol{E}} M} M \in T \qquad \frac{T \vdash_{\boldsymbol{E}} M_1 \cdots T \vdash_{\boldsymbol{E}} M_k}{T \vdash_{\boldsymbol{E}} f(M_1, \dots, M_k)} f \in \Sigma$$

$$\frac{T \vdash M}{T \vdash M'} M =_{\boldsymbol{E}} M'$$

**Example**: E := dec(enc(x, y), y) = x and  $T = \{enc(secret, k), k\}$ .

$$\frac{T \vdash \operatorname{enc}(\operatorname{secret}, k)}{T \vdash \operatorname{dec}(\operatorname{enc}(\operatorname{secret}, k), k)} \quad f \in \Sigma$$
$$\frac{T \vdash \operatorname{dec}(\operatorname{enc}(\operatorname{secret}, k), k)}{T \vdash \operatorname{secret}} \quad \operatorname{dec}(\operatorname{enc}(x, y), y) = x$$

э

Motivation Intruder problem Some results

# Rewriting systems

For analyzing equational theories, we (try to) associate to E a finite convergent rewriting system  ${\cal R}$  such that :

 $u =_E v$  iff  $u \downarrow = v \downarrow$ 

Definition (Characterization of the deduction relation)

Let  $t_1, \ldots, t_n$  and u be terms in normal form.

 $\{t_1,\ldots,t_n\}\vdash u \quad \text{iff} \quad \exists C \text{ s.t. } C[t_1,\ldots,t_n] \to^* u$ 

(Also called Cap Intruder problem [Narendran et al])

・ロト ・同ト ・ヨト ・ヨト

Motivation Intruder problem Some results

#### Some results with equational theories

| Security problem                      |                                                                                                                                                                                                                                                     |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bounded number of sessions            | Unbounded number of sessions                                                                                                                                                                                                                        |
| co-NP-complete                        | Ping-pong protocols :                                                                                                                                                                                                                               |
| [CKRT04]                              | co-NP-complete [Turuani04]                                                                                                                                                                                                                          |
| Exclusive Or Decidable [CS03, CKRT03] | One copy - No nonces :                                                                                                                                                                                                                              |
|                                       | Decidable [CLC03]                                                                                                                                                                                                                                   |
|                                       | Two-way automata - No nonces :                                                                                                                                                                                                                      |
|                                       | Decidable [Verma03]                                                                                                                                                                                                                                 |
| Decidable [Shmatikov04]               | Two-way automata - No nonces :                                                                                                                                                                                                                      |
| Decidable [Simatikov04]               | Decidable [Verma03]                                                                                                                                                                                                                                 |
| co-NP-complete [CKRT03]               |                                                                                                                                                                                                                                                     |
| General case :                        | AC properties of                                                                                                                                                                                                                                    |
| Decidable [Shmatikov04]               | the Modular Exponentiation                                                                                                                                                                                                                          |
| Restricted protocols :                | No nonces :                                                                                                                                                                                                                                         |
| co-NP-complete [CKRT03]               | Semi-Decision Procedure [GLRV04]                                                                                                                                                                                                                    |
|                                       | Sec<br>Bounded number of sessions<br>co-NP-complete<br>[CKRT04]<br>Decidable [CS03, CKRT03]<br>Decidable [Shmatikov04]<br>co-NP-complete [CKRT03]<br>General case :<br>Decidable [Shmatikov04]<br>Restricted protocols :<br>co-NP-complete [CKRT03] |

(日) (同) (三) (三)

Motivation Intruder problem Some results

# Outline of the talk



Introduction

- Context
- Credit Card Payment Protocol
- Other examples



#### Formal models

- Intruder
- Protocol
- Solving constraint systems
- A brief survey of results
- 3

#### Adding equational theories

- Motivation
- Intruder problem
- Some results
- 4 Towards more guarantees
  - Cryptographic models
  - Linking Formal and cryptographic models
  - Conclusion

Cryptographic models Linking Formal and cryptographic models Conclusion

# Specificity of cryptographic models

- Messages are bitstrings
- Real encryption algorithm
- Real signature algorithm
- General and powerful adversary
- $\rightarrow$  very little abstract model

A ≥ <</p>

Cryptographic models Linking Formal and cryptographic models Conclusion

# Encryption nowadays

 $\rightarrow$  Based on algorithmically hard problems.

RSA Function n = pq, p et q primes.

e : public exponent

•  $x \mapsto x^e \mod n$  easy (cubic)

• 
$$y = x^e \mapsto x \mod n$$
 difficult  
 $x = y^d$  où  $d = e^{-1} \mod \phi(n)$ 

Image: A = A

Cryptographic models Linking Formal and cryptographic models Conclusion

## Encryption nowadays

 $\rightarrow$  Based on algorithmically hard problems.

RSA Function n = pq, p et q primes. *e* : public exponent

•  $x \mapsto x^e \mod n$  easy (cubic)

• 
$$y = x^e \mapsto x \mod n$$
 difficult  
 $x = y^d$  où  $d = e^{-1} \mod \phi(n)$ 

Diffie-Hellman Problem

- Given  $A = g^a$  and  $B = g^b$ ,
- Compute  $DH(A, B) = g^{ab}$

- ∢ ≣ →

< 67 ▶
Cryptographic models Linking Formal and cryptographic models Conclusion

### Encryption nowadays

 $\rightarrow$  Based on algorithmically hard problems.

RSA Function n = pq, p et q primes.

- e : public exponent
  - $x \mapsto x^e \mod n$  easy (cubic)

• 
$$y = x^e \mapsto x \mod n$$
 difficult  
 $x = y^d$  où  $d = e^{-1} \mod \phi(n)$ 

Diffie-Hellman Problem

- Given  $A = g^a$  and  $B = g^b$ ,
- Compute  $DH(A, B) = g^{ab}$

 $\rightarrow$  Based on hardness of integer factorization.

Cryptographic models Linking Formal and cryptographic models Conclusion

### Estimations for integer factorization

| Module | Operations             |                      |
|--------|------------------------|----------------------|
| (bits) | (in log <sub>2</sub> ) |                      |
| 512    | 58                     |                      |
| 1024   | 80                     | $pprox 2^{60}$ years |
| 2048   | 111                    |                      |
| 4096   | 149                    |                      |
| 8192   | 156                    |                      |

 $\rightarrow$  Lower bound for RSA and Diffie-Hellman.

Image: A image: A

Cryptographic models Linking Formal and cryptographic models Conclusion

# Setting for cryptographic protocols

#### Protocol :

- Message exchange program
- using cryptographic primitives

Adversary A: any probabilistic polynomial Turing machine, *i.e.* any probabilistic polynomial program.

- polynomial : captures what is feasible
- probabilistic : the adversary may try to guess some information



Cryptographic models Linking Formal and cryptographic models Conclusion

### Definition of secrecy preservation

 $\rightarrow$  Several notions of secrecy :

One-Wayness : The probability for an adversary  $\mathcal{A}$  to compute the secret *s* against a protocol  $\mathcal{P}$  is negligible (smaller than any inverse of polynomial).

 $\forall p \text{ polynomial } \exists \eta_0 \ \forall \eta \geq \eta_0 \quad \mathsf{Pr}^{\eta}_{m,r}[\mathcal{A}(\mathcal{P}_{\mathcal{K}}) = s] \leq rac{1}{p(\eta)}$ 

 $\eta$  : security parameter = key length

- 4 同 2 4 日 2 4 日 2 4

Cryptographic models Linking Formal and cryptographic models Conclusion

### Not strong enough !

- The adversary may be able to compute half of the secret message.
- There is no guarantee in case that some partial information on the secret is known.



< 4 → < 三

Cryptographic models Linking Formal and cryptographic models Conclusion

### Not strong enough !

- The adversary may be able to compute half of the secret message.
- There is no guarantee in case that some partial information on the secret is known.



 $\rightarrow$  Introduction of a notion of indistinguishability.

Cryptographic models Linking Formal and cryptographic models Conclusion

# Indistinguishability

The secrecy of s is defined through the following game :

- Two values  $n_0$  and  $n_1$  are randomly generated instead of s;
- The adversary interacts with the protocol where s is replaced by n<sub>b</sub>, b ∈ {0,1};
- We give the pair  $(n_0, n_1)$  to the adversary;
- The adversary gives b',

The data s is secret if  $Pr[b = b'] - \frac{1}{2}$  is a negligible function.

• □ ▶ • • □ ▶ • • □ ▶

Cryptographic models Linking Formal and cryptographic models Conclusion

# A typical cryptographic proof

- Assume that some algorithmic problem P is difficult (E.g. RSA or integer factorization or Discrete Log or CDH, DDH, ...)
- Suppose that a (polynomial probabilistic) adversary A breaks the protocol security with non negligible probability

Cryptographic models Linking Formal and cryptographic models Conclusion

# A typical cryptographic proof

- Assume that some algorithmic problem P is difficult (E.g. RSA or integer factorization or Discrete Log or CDH, DDH, ...)
- Suppose that a (polynomial probabilistic) adversary A breaks the protocol security with non negligible probability
- Solution Build out of  $\mathcal{A}$  an adversary  $\mathcal{B}$  that solves P.

Cryptographic models Linking Formal and cryptographic models Conclusion

# A typical cryptographic proof

- Assume that some algorithmic problem P is difficult (E.g. RSA or integer factorization or Discrete Log or CDH, DDH, ...)
- Suppose that a (polynomial probabilistic) adversary A breaks the protocol security with non negligible probability
- Solution Build out of  $\mathcal{A}$  an adversary  $\mathcal{B}$  that solves P.
- Onclude that the protocol is secure provided P is difficult.

Cryptographic models Linking Formal and cryptographic models Conclusion

## Formal and Cryptographic approaches

|                  | Formal approach                | Cryptographic approach      |
|------------------|--------------------------------|-----------------------------|
| Messages         | terms                          | bitstrings                  |
| Encryption       | idealized                      | algorithm                   |
| Adversary        | idealized                      | any polynomial<br>algorithm |
| Secrecy property | reachability-based<br>property | indistinguishability        |
| Guarantees       | unclear                        | strong                      |
| Protocol         | may be complex                 | usually simpler             |
|                  |                                |                             |

(日) (同) (三) (三)

Cryptographic models Linking Formal and cryptographic models Conclusion

### Formal and Cryptographic approaches

|                  | Formal approach                | Cryptographic approach              |
|------------------|--------------------------------|-------------------------------------|
| Messages         | terms                          | bitstrings                          |
| Encryption       | idealized                      | algorithm                           |
| Adversary        | idealized                      | any polynomial<br>algorithm         |
| Secrecy property | reachability-based<br>property | indistinguishability                |
| Guarantees       | unclear                        | strong                              |
| Protocol         | may be complex                 | usually simpler                     |
| Proof            | automatic                      | by hand, tedious<br>and error-prone |

#### Link between the two approaches?

(日) (同) (三) (三)

Cryptographic models Linking Formal and cryptographic models Conclusion

### Composition of the two approaches

#### Automatic cryptographically sound proofs



(日) (同) (三) (三)

Cryptographic models Linking Formal and cryptographic models Conclusion

### Example : correspondence of secrecy properties

#### Theorem

For protocols with only public key encryption, signatures and

nonces,

Whenever a protocol is proved to ensure secrecy in formal models then it ensures cryptographic indistinguishability in the computational models.



Image: A = A

Cryptographic models Linking Formal and cryptographic models Conclusion

### Hypotheses on the Implementation

- encryption : IND-CCA2 (e.g. the OAEP-RSA scheme)
  → the adversary cannot distinguish between {n<sub>0</sub>}<sub>k</sub> and {n<sub>1</sub>}<sub>k</sub> even if he has access to n<sub>0</sub> and n<sub>1</sub> and to encryption and decryption oracles.
- signature : existentially unforgeable under chosen-message attack *i.e.* one can not produce a valid pair (m, σ)
- parsing :
  - each bit-string has a label which indicates his type (identity, nonce, key, signature, ...)
  - one can retrieve the (public) encryption key from an encrypted message.
  - one can retrieve the signed message from the signature

(日) (同) (目) (日) (日)

Cryptographic models Linking Formal and cryptographic models Conclusion

## Proof technique

#### Lemma (Mapping lemma)

Each execution trace of a concrete adversary is captured by a symbolic execution trace of an ideal adversary, except with negligible probability

Cryptographic models Linking Formal and cryptographic models Conclusion

# Proof technique

#### Lemma (Mapping lemma)

Each execution trace of a concrete adversary is captured by a symbolic execution trace of an ideal adversary, except with negligible probability

Proof technique : Reduce the lemma to the robustness of the primitives (which itself reduces to hardness of algorithmic problem like integer factorization).

Cryptographic models Linking Formal and cryptographic models Conclusion

# Proof technique

#### Lemma (Mapping lemma)

Each execution trace of a concrete adversary is captured by a symbolic execution trace of an ideal adversary, except with negligible probability

Proof technique : Reduce the lemma to the robustness of the primitives (which itself reduces to hardness of algorithmic problem like integer factorization).

Example : If a computational (concrete) adversary  $\mathcal{A}$  is able to compute  $\{n_a\}_{\mathcal{K}_a}$  out of  $\{\langle A, n_a \rangle\}_{\mathcal{K}_a}$ . Then we can build an adversary  $\mathcal{A}'$  that breaks the encryption  $\{\}_{\mathcal{K}_a}$ .

・ロト ・同ト ・ヨト ・ヨト

Cryptographic models Linking Formal and cryptographic models Conclusion

# Conclusion

Formal methods form a powerful approach for analyzing security protocols

- Makes use of classical techniques in formal methods : term algebra, equational theories, clauses and resolution techniques, tree automata, etc.
  - $\Rightarrow$  Many decision procedures
- Several automatic tools
  - For successfully detecting attacks on protocols (e.g. Casper, Avispa)
  - For proving security for an arbitrary number of sessions (e.g. ProVerif)
- Provides cryptographic guarantees under classical assumptions on the implementation of the primitives

Cryptographic models Linking Formal and cryptographic models Conclusion

## Some current directions of research

### • Enriching the symbolic model

- Considering more equational theories (e.g. theories for e-voting protocols)
- Adding more complex structures for data (list, XML, ...)
- Considering recursive protocols (e.g. group protocol) where the number of message exchanges in a session is not fixed
- Proving more complex security properties like equivalence-based properties (e.g. for anonymity or e-voting protocols)
- With cryptographic guarantees
  - Combining formal and cryptographic models for more complex primitives and security properties.
  - How far can we go?
  - Is it possible to consider weaker cryptographic primitives?

・ロト ・同ト ・ヨト ・ヨト