Model Checking Concurrent Programs

Aarti Gupta

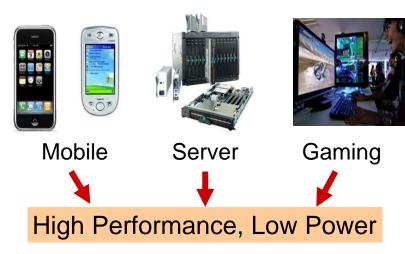
agupta@nec-labs.com

Systems Analysis and Verification

http://www.nec-labs.com

Acknowledgements

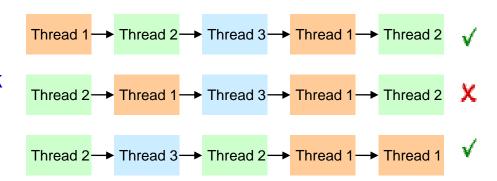
■ NEC Systems Analysis & Verification Group


- Gogul Balakrishnan
- Malay Ganai
- Franjo Ivancic
- Vineet Kahlon
- Weihong Li
- Nadia Papakonstantinou
- Sriram Sankaranarayanan
- Nishant Sinha
- Chao Wang

Interns

Himanshu Jain, Yu Yang, Aleksandr Zaks, ...

Motivation


☐ Key Computing Trends

- Single core solutions don't work
- Need multi-core solutions
- Need multi-core programming

□ Parallel/Multi-threaded Programming

- Difficult to get right
 - manual parallelization
 - · dependencies due to shared data
- Difficult to debug
 - too many interleavings of threads
 - hard to reproduce schedule

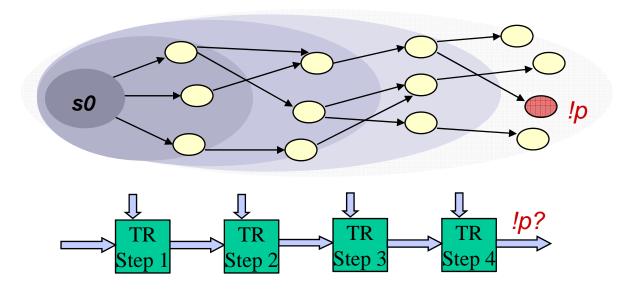
Goal: Improve SW productivity in the development of concurrent programs

- Find concurrency bugs using powerful program verification & analysis techniques: data races, deadlocks, atomicity violations
- Assist code understanding of concurrency aspects

Outline

- □ Background
- **☐** Model Checking Concurrent Programs
 - Results for Interacting Pushdown Systems
- ☐ *Practical* Model Checking of Concurrent Programs
 - Four main strategies
- □ ConSave Platform
- Summary & Challenges

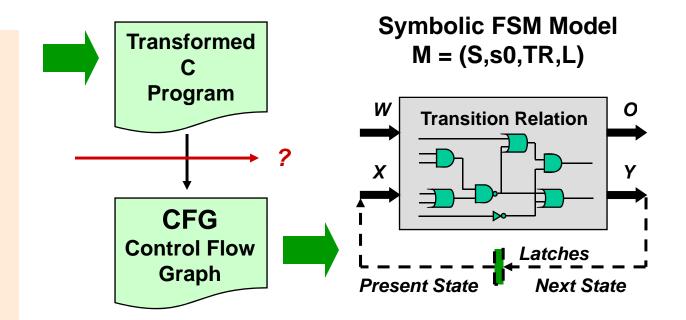
Automatic Property Verification


- □ Verification Approach: e.g. Model Checking
 - Exhaustive state space exploration
 - Maintains a representation of visited states (explicit states, BDDs, ckt graphs ...)
 - Expensive, need abstractions and approximations
- Falsification Approach: e.g. Bounded Model Checking
 - State space search for bugs (counter-examples) or test case inputs
 - Typically does not maintain representation of visited states
 - Less expensive, but need good search heuristics

Model Checking AG p

Does the set of states reachable from s0 contain a bad state(s)?

Bounded Model Checking


Is there is a path from the initial state s0 to the bad state(s)?

Extracting Program Models

C Program

```
1: void bar() {
      int x = 3, y = x-3;
2:
3:
      while (x \le 4)
4:
        y++;
5:
        x = foo(x);
6:
7:
      v = foo(v):
8: }
9:
10: int foo ( int I ) {
11:
       int t = 1+2;
12:
       if (t>6)
13:
           t - = 3:
14:
      else
15:
           t --:
16:
       return t:
17: }
```


- Source-to-source transformations
 - For modeling pointers, arrays, structures ...
 - For automatic instrumentation of checkers
- **□** Control Flow Graph: Intermediate Representation
 - Well-studied optimizations provide simplification and reduction in size of verification models
 - Allows separation of model building phase from model checking phase

Modeling Pointers (src-to-src transformations)

□ Pointers replaced by auxiliary variables (introduce p' to track *p)
Reads/writes transformed to conditional assignments[Semeria & De Micheli 98]

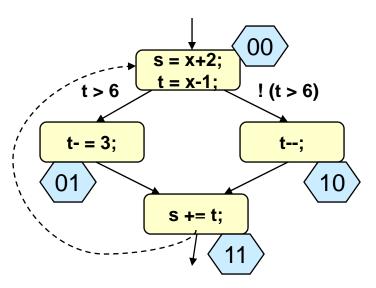
- □ Requires sound pointer analysis to derive sound points-to sets
 - We use fast (flow/context insensitive) Steensgaard pointer analysis
 - Can add Andersen's analysis or context-sensitivity also
 [Kahlon PLDI 08]

Translations of CFG to Symbolic Models

Our target for model checking: Finite state verification model

- Recursive functions are also modeled using a bounded call stack
 - Alternative: Boolean programs

[Ball & Rajamani 01]


Recursive data structures are bounded up to some user-chosen depth

☐ This yields a CFG with only int type data variables, i.e. a numeric program

Program Counter (PC) variables are used to encode basic blocks

- Each data variable is interpreted as:
 - a vector of state-bits for bit-precise SAT- or SMT-based model checking
 - an infinite integer for static analysis or polyhedra-based model checking

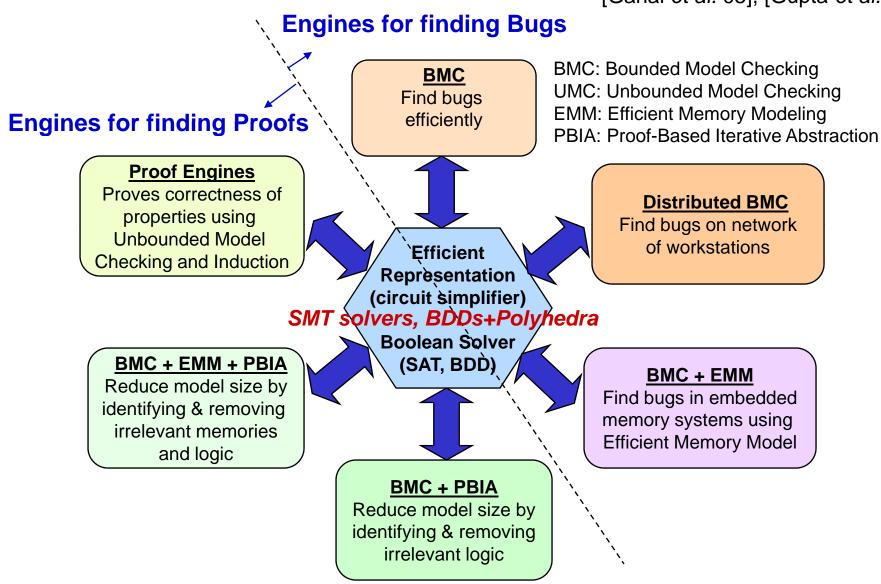
CFG => Finite State (control + data) Machine

Basic blocks => control states (PC variables)

Program variables => data states

Guarded transitions => TR for control states

Parallel assignments => TR for data states


Loop back-edges => transitions between control states

FSMs: Bit-precise accurate models

Extended FSMs: finite control, but infinite data (integers)

VeriSol Model Checking Platform

[Ganai et al. 05], [Gupta et al. 06]

Dataflow Analysis for Concurrent Programs

- □ Close relationship between Dataflow Analysis for sequential programs and the model checking problem for Pushdown Systems (PDS) [Schmidt, Bouajjani et.al., Walukeiwicz]
- □ Various extensions of the basic PDS framework have been proposed leading to useful generalizations of the basic dataflow analysis framework [Reps, Schwoon, Jha et al.]
- □ Analogous to the sequential case, dataflow analysis for concurrent programs reduces to the model checking problem for interacting PDS systems
- ☐ However, reachability is undecidable for PDSs with Pairwise Rendezvous [Ramalingam 01]

Model Checking for Interacting PDS

- □ Reachability is undecidable for PDSs with Pairwise Rendezvous
- How to get around the undecidability barrier?
 - Give up precision
 - Thread-modular reasoning
 - Over-approximation techniques

[Chaki et al. 06]

- Restrict the synchronization/communication models
 - PA processes

[Esparza and Podelski]

Constrained Dynamic Pushdown Networks

[Bouajjani et al.]

Asynchronous Dynamic Pushdown Network

[Bouajjani et al.]

- Give up soundness
 - Bounded number of context switches

[Qadeer & Rehof 05, CHESS]

Dataflow analysis for bounded-context systems

[Reps et al.]

- **☐** We focus on patterns of synchronization primitives
 - In practice, recursion and synchronization are relatively "well-behaved"
 - Decidable for PDSs interacting via <u>nested locks</u> [Kahlon, Ivancic & G 05]
 - Undecidable for PDSs interacting via non-nested locks

Model Checking Double-indexed LTL Properties

[Kahlon & G, POPL 07]

- □ For L(F,G) and L(U) the model checking problem is undecidable even for system comprised of non-interacting PDSs
 - For decidability, restriction to fragments L(G, X) and L(X, F, infF)
- ☐ For PDSs interacting via nested locks the model checking problem is decidable only for the fragments
 - L(G, X)
 - L(X, F, infF)
- □ For PDSs interacting via
 - Pairwise rendezvous, or
 - Asynchronous rendezvous, or
 - Broadcasts

the model checking problem is decidable only for L(G, X)

Practical Model Checking of Concurrent Programs

- ☐ In addition to state space explosion (as in sequential programs) the complexity bottleneck is exhaustive exploration of interleavings
- Multi-pronged approach for handling interleavings
 - Avoid interleavings altogether
 - Thread-modular reasoning
 - Rely on decomposition results for nested locks Strategy 1
 - Avoid redundant interleavings
 - Partial Order Reduction (POR)
 - Combine POR with symbolic model checking
 Strategy 2
 - Semantic/Property-based reduction in interleavings
 - Derive invariants using abstract interpretation Strategy 3
 - Use property-driven pruning Strategy 4
- ☐ These are (mostly) orthogonal to other techniques
 - Shape analysis, Bounded context analysis, Stateless model checking, ...

Strategy 1: Avoid Interleavings by Decomposition

A concurrent multi-threaded program uses locks in a nested fashion iff along every computation, each thread can only release that lock which it acquired last, and that has not yet been released

f -> g: nested locks

f -> h: non-nested locks

- Programming guidelines typically recommend that programmers use locks in a nested fashion
- □ Locks are guaranteed to be nested in Java_{1.4} and C#

Acquisition History: Motivation

```
Thread1 () {
    f<sub>1</sub>: acquire(a);
    f<sub>2</sub>: acquire(c);
    f<sub>3</sub>: release(c);
    f<sub>4</sub>: Error1;
    }

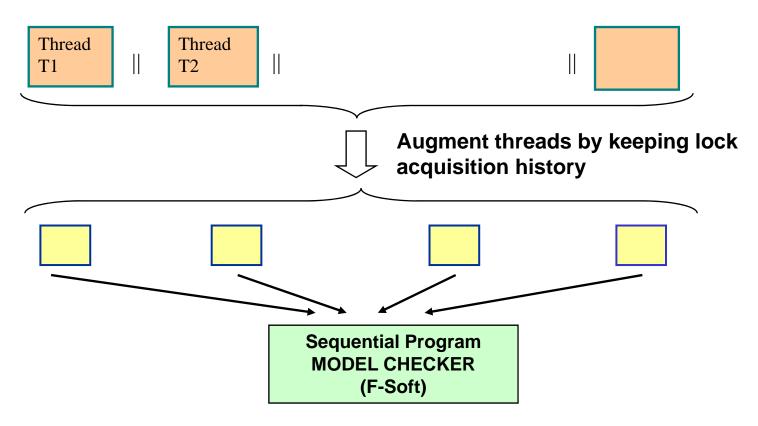
Thread2 () {
    g<sub>1</sub>: acquire(c);
    g<sub>2</sub>: acquire(a);
    g<sub>3</sub>: release(a);
    g<sub>4</sub>: Error2;
    }
```

- Question: Is it possible to reach Error states simultaneously?
- Answer: f_4 and g_4 are not simultaneously reachable even though Lock-Set(f_4) \cap Lock-Set(g_4) = \emptyset [Savage et al.]
- ☐ Tracking Lock-Sets is not enough

Acquisition History: Definition

```
Thread1 ( ) {
    f<sub>1</sub>: acquire(a);
    f<sub>2</sub>: acquire(c);
    f<sub>3</sub>: release(c);
    f<sub>4</sub>: Error1;
    }

Thread2 ( ) {
    g<sub>1</sub>: acquire(c);
    g<sub>2</sub>: acquire(a);
    g<sub>3</sub>: release(a);
    g<sub>4</sub>: Error2;
    }
```

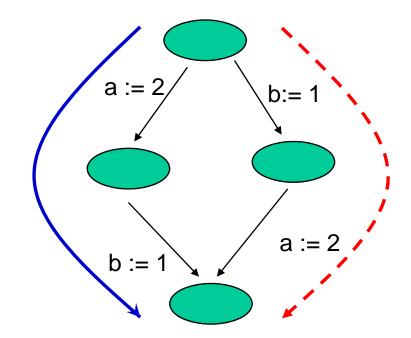

- ☐ The acquisition history of a lock *k* at a control location of thread T is the set of locks acquired by T since the last acquisition of *k* by T
 - Acq-Hist $(f_4, a) = \{c\}$
 - Acq-Hist $(g_4, c) = \{a\}$
- Acq-Hist(f_1 , k_1) is consistent with Acq-Hist(g_2 , k_2) iff the following does not hold: k_1 ∈ Acq-Hist(g_2 , k_2) and k_2 ∈ Acq-Hist(f_1 , k_1)
- ☐ Check on consistent Acq-Hist avoids circular dependencies that can lead to deadlocks, which make states unreachable

Decomposition Result for Nested Locks

[Kahlon et al. CAV 05]

- States c₁ and c₂ in Thread1 and Thread2, respectively, are simultaneously reachable iff
 - Lock-Set(c_1) \cap Lock-Set(c_2) = \emptyset
 - There exists some path with consistent acquisition histories
 i.e., where there do not exist locks k and I such that :
 - $l \in Acq-Hist(c_1, k)$
 - $k \in Acq-Hist (c₂, I)$
- Corollary: By tracking acquisition histories we can decompose model checking for a concurrent program to its individual threads
 - Augment states with acquisition histories AH
 - Reachability: There exist consistent acquisition histories AH_1 and AH_2 such that the augmented local states (c_1, AH_1) and (c_2, AH_2) are reachable individually in T_1 and T_2 , respectively
 - Polynomial in number of states, exponential in number of locks
 - Context-sensitive static analysis results in small locksets and AHs

Model Checking by Decomposition


- □ Reachability in multi-threaded program with *nested lock access* is reduced to model checking individual threads [Kahlon *et al.* CAV 05]
 - Avoids state explosion arising due to concurrency
- Model checking LTL properties for threads with nested locks

[Kahlon et al. LICS 06, POPL 07]

Strategy 2: Avoid Redundant Thread Interleavings

□ Partial Order Reduction (POR)

- Explore a restricted set of interleavings, ideally one from each equivalence class
- At each state, explore the set of Persistent transitions – the smaller the better
- Commonly used in explicit state model checking [SPIN, VeriSoft]

■ Transactions

[Lipton]

- Find atomic code regions (transactions), e.g. by lock analysis
- Consider context switches only at transaction boundaries [Stoller 02]

Persistent Sets using Acquisition Histories

Example

```
Thread1 (){

f<sub>1</sub>: acquire(a);
f<sub>2</sub>: acquire(c);
f<sub>3</sub>: release(c);
f<sub>4</sub>: ShVarAccess<sub>1</sub>;
f<sub>5</sub>: release(a);
}

Thread2 (){

g<sub>1</sub>: acquire(c);
g<sub>2</sub>: acquire(a);
g<sub>3</sub>: release(a);
g<sub>4</sub>: ShVarAccess<sub>2</sub>;
g<sub>5</sub>: release(c);
}
```

- \Box Consider global state (f₄, g₁)

Transition from g_1 to g_2 is included in the persistent set based on Lock-sets

- \Box However, there is no need for a context switch at f_4 Why?
- Thread2 cannot access ShVar at g_4 without Thread1 releasing lock a first Thus the transition from g_1 to g_2 is not included in the persistent set

Bottomline

□ Persistent sets based on Lock Acq-Hist are more refined than those based on Lock-sets [Kahlon, G. and Sinha, CAV 06]

Combining POR + Symbolic Model Checking

- □ Partial Order Reduction (POR)
 - Avoid redundant interleavings
 - Use acquisition histories to refine persistent sets
- □ Symbolic Model Checking (SMC)
 - Compact representation for large state spaces
 - SAT, BDDS, SMT Solvers

Goal: To combine them in a synergistic manner

Implementation

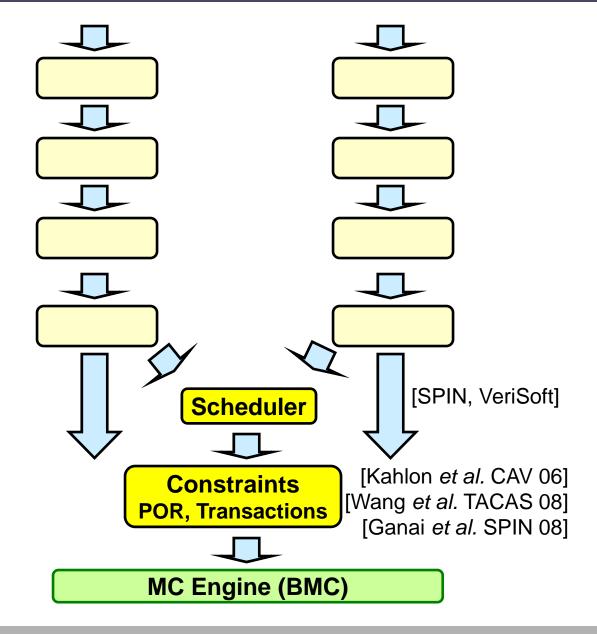
- □ Build a circuit based model for each thread (as before)
- ☐ Use a scheduler that adds partial order + transaction constraints
- ☐ Carry out symbolic model checking using technique of choice
 - Separation of model building and verification stages allows flexibility

Generic Symbolic Model Checker Framework

Shared variable detection

[Kahlon et al. 07]

Lockset analysis


Thread-safe static analysis

Model Generation

Scheduler

Symbolic Constraints
For Scheduler

Symbolic Model Checking

Case study: Daisy file system

Concurrent software benchmark

[Qadeer 04]

- 1 KLOC of C-like Java (manually converted to C)
- Simple data structures
- Fine-grained concurrency
- Variety of correctness properties
- Experimental results for finding 3 known races

[Kahlon et al. CAV 06]

SAT-based	Interleaved	POR	POR + Transactions
BMC with	Execution	Reduction	
Race ₁	20 min	3 sec	1.4 sec
	6.5 MB	5.7 MB	5.5 MB
Race ₂	-	10 hrs 950 MB	12 min 517 Mb
Race ₃	-	40 hrs 1870 MB	1.67 hrs 902 MB

Sound Reduction of Thread Interleavings

- ☐ So far, identification of conflicts/transactions was done statically without considering dataflow facts
 - Persistent transitions: if they access the same shared variable now, or sometime in the future
 - "Sometime in the future": Usually over-approximated by reachability in CFG
 - May lead to too many thread interleavings
- ☐ Strategy 3: Reduce number of thread interleavings by using concurrent dataflow analysis [Kahlon et al. TACAS 09]
 - Reason about simultaneous reachability of global control states
 - Let static analysis perform more reductions, before model checker takes over
- ☐ Strategy 4: Use Dynamic POR for precise information on conflicts
 - Backtracks in DFS only if there is an actual conflict [Flanagan & Godefroid 05]
 - We further reduce number of backtracks by property-driven pruning

[Wang et al. ATVA 08]

Note: These reductions are sound, unlike bounded analysis as in [CHESS]

Strategy 3: Motivating Example

```
void Dealloc Page ()
void Alloc Page(){
                                         pt lock(&plk);
 a = c:
                                         if (pg_count == LIMIT) {
pt_lock(&plk);
if (pg_count >= LIMIT) {
                                           sh = 2:
   pt_wait (&pg_lim, &plk);
                                           decr (pg_count);
   incr (pg_count);
                                           sh1 = sh;
   pt_unlock(&plk);
                                           pt_notify (&pg_lim, &plk);
   sh1 = sh;
                                           pt_unlock(&plk);
} else {
                                         } else {
   pt_lock (&count_lock);
                                           pt_lock (&count_lock);
   pt_unlock (&plk);
                                           pt_unlock (&plk);
   page = alloc_page();
                                           decr (pg_count);
   sh = 5:
                                           sh = 4:
   if (page)
                                           pt_unlock(&count_lock);
     incr (pg count);
                                          end-if
   pt_unlock(&count_lock);
 end-if
 b = a+1:
                              Consider all possible pairs of locations
                              where shared variables are accessed
```

(e.g. for checking data races)

Motivating Example: Lockset Analysis

```
void Alloc_Page ( ) {
                                         void Dealloc_Page ( )
a = c;
                                          pt_lock(&plk);
 pt_lock(&plk);
                                          if (pg_count == LIMIT) {
if (pg_count >= LIMIT) {
                                            sh = 2;
   pt_wait (&pg_lim, &plk);
                                            decr (pg_count);
   incr (pg_count);
                                            sh1 = sh:
   pt unlock(&plk);
                                            pt_notify (&pg_lim, &plk);
   sh1 = sh;
                                            pt_unlock(&plk);
} else {
                                          } else {
   pt_lock (&count_lock);
                                            pt_lock (&count_lock);
   pt_unlock (&plk);
                                            pt_unlock (&plk);
   page = alloc_page();
                                            decr (pg_count);
   sh = 5;
                                            sh = 4;
   if (page)
                                            pt_unlock(&count_lock);
     incr (pg count);
                                          end-if
   pt_unlock(&count_lock);
 end-if
 b = a+1;
                         No data race
                         Simultaneously unreachable
                         Due to locksets (plk)
```

Motivating Example: Synchronization Constraints

```
void Alloc_Page ( ) {
                                       void Dealloc Page ()
                                         pt lock(&plk);
 a = c;
 pt_lock(&plk);
                                         if (pg_count == LIMIT) {
 if (pg_count >= LIMIT) {
                                           sh = 2;
   pt_wait (&pg_lim, &plk);
                                           decr (pg_count);
   incr (pg count);
                                           sh1 = sh;
   pt_unlock(&plk);
                                           pt_notify (&pg_lim, &plk);
   sh1 = sh;
                                           pt unlock(&plk);
} else {
                                        } else {
   pt_lock (&count_lock);
                                           pt_lock (&count_lock);
   pt_unlock (&plk):
                                           pt_unlock (&plk);
   page = alloc_page();
                                           decr (pg_count);
   sh = 5:
                                           sh = 4;
                                           pt_unlock(&count_lock);
   if (page)
                                         end-if
     incr (pg count);
   pt_unlock(&count_lock);
 end-if
 b = a+1:
                        No data race
                        Simultaneously unreachable
                        Due to wait-notify ordering constraint
```

Motivating Example

```
void Alloc_Page ( ) {
                                        void Dealloc Page ()
                                         pt lock(&plk);
 a = c;
 pt_lock(&plk);
                                         if (pg_count == LIMIT) {
 if (pg_count >= LIMIT) {
                                           sh = 2:
                                           decr (pg count);
   pt_wait (&pg_lim, &plk);
   incr (pg_count);
                                           sh1 = sh;
   pt_unlock(&plk);
                                           pt_notify (&pg_lim, &plk);
   sh1 = sh;
                                           pt_unlock(&plk);
                                         } else {
 } else {
   pt lock (&count lock);
                                           pt_lock (&count_lock);
   pt_unlock (&plk);
                                           pt_unlock (&plk);
                                           decr (pg_count);
   page = alloc_page();
                                           sh = 4;
   sh = 5:
   if (page)
                                           pt_unlock(&count_lock);
     incr (pg_count);
                                          end-if
                                                    How do we get these invariants?
   pt unlock (&count lock);
                                                    Abstract Interpretation of course:)
 end-if
 b = a+1:
                         NO, due to invariants at these locations
                            pg count is in (-inf, LIMIT) in T1
    Data race?
                            pg count is in [LIMIT, +inf) in T2
                         Therefore, these locations are not simultaneously reachable
```

Transaction Graphs

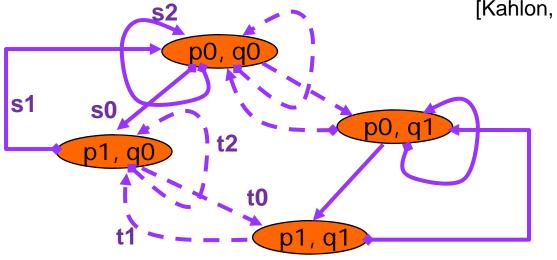
- ☐ Intuitively, a Transaction Graph is a product graph over control states
 - Not all product (global) control states, keep only the reachable control states
 - An edge denotes an uninterruptible sequence of actions by a single thread
 - Note: What is uninterruptible depends on global state, not just local state
- ☐ Two main (inter-related) problems
 - How to find which global control states (nodes) are reachable?
 - How to find uninterruptible sequences of actions (transactions)?
- **☐** We use an iterative approach (described next)
 - Unreachable nodes ←
 - -> May lead to larger transactions
 - -> Larger transactions correspond to reduced interference (interleavings)
 - -> Reduced interference may lead to more proofs of unreachability
- Use abstract interpretation over the transaction graph to find program invariants over the concurrent program
 - Invariants are used to slice away parts of CFGs, leading to reduced interference

Transaction Graph Example

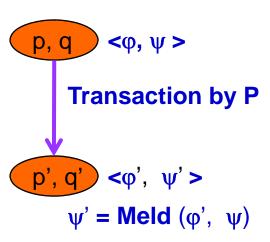
```
repeat (forever){
                                                            p0
                                           s1
  lock(posLock);
                                              pos > SLOTS
                                                            pos <= SLOTS
  while ( pos > SLOTS){
                                                                         s2
       unlock(posLock);
                                               s0
      wait(full);
       lock(posLock);
                                                                     pos += 1
                                           p1
  data[pos++] := ...;
                                                        pos > 0
  if (pos > 0){
     signal (emp);
                                          full?
   unlock(posLock);
                                                          emp!
                   p0, q0
                                                     Nodes where context
                                                     switches to be considered
  s1
                                  p0, q1
```

Iterative Refinement of Transaction Graphs

[Kahlon, Sankaranarayanan & G, TACAS 09]


- Transaction Graph: Abstract Representation for Thread Interleavings
 - At any stage, the transaction graph captures the set of interleavings that need to be considered for sound static analysis or model checking
- Initial Transaction Graph
 - Use static POR to consider non-redundant interleavings
 - Over control states only, need to consider CFL reachability
 - Use synchronization constraints to eliminate unreachable nodes
 - For example, lock-based analysis, or wait-notify ordering constraints
 - Precise transaction identification under synchronization constraints: based on use of Parikh-bounded languages [Kahlon 08]
- Iterative Refinement

Repeat


- Compute range, octagonal, or polyhedral invariants over the transaction graph
- Use invariants to prove nodes unreachable and to simplify CFGs (slicing, ...)
- Re-compute transactions (static POR, synchronization) on the simplified CFGs

Until transactions cannot be refined further

Abstract Interpretation over Transaction Graphs

[Kahlon, Sankaranarayanan & G, TACAS 09]

- □ Compute invariants $<\phi$, ψ > at each node <p, ϕ >
 - φ holds over the state of thread P (shared + local)
 - ψ holds over the state of thread Q (shared + local)
- \Box < ϕ , ψ > must satisfy the consistency condition over shared variables
 - They must agree on values of the shared variables, i.e. $\varphi \mid_{shared} \equiv \psi \mid_{shared}$
- Basic operation: Forward propagation (post) over transactional edge
 - Computed for each edge by sequential static analysis
- Melding operator : for maintaining consistency
 - After post-condition $\langle \phi, \psi \rangle \rightarrow \langle \phi', \psi \rangle$, may also need to update ψ to ψ'
 - Meld $(\phi, \psi) = \psi'$, such that $\psi \subseteq \psi'$ and $\psi'|_{shared} \equiv \phi|_{shared}$

Application: Detection of Data Races

- ☐ Implemented in a tool called CoBe (Concurrency Bench)
- Phase 1: Static Warning Generation
 - Shared variable detection
 - Lockset analysis
 - Generate warnings at global control states (c1, c2) when
 - the same shared variable is accessed, and
 - at least one access is a write operation
- Phase 2: Static Warning Reduction
 - Create a Transaction Graph, and perform static reachability analysis
 - POR reductions, synchronization constraints, sound invariants
 - If (c1, c2) is proved unreachable, then eliminate the warning
- □ Phase 3: Model Checking
 - Otherwise, create a model for model checking reachability of (c1, c2)
 - Slicing, constant propagation, enforcing invariants: lead to smaller models
 - Makes model checking viable
 - Provides a concrete error trace

CoBe: Experiments

☐ Linux device drivers with known data race bugs

Linux Driver	KLOC	#Sh Vars	#Warnings	Time	# After	Time	#Witness	#Unknown
				(sec)	Invariants	(sec)	MC	
pci_gart	0.6	1	1	1	1	4	0	1
jfs_dmap	0.9	6	13	2	1	52	1	0
hugetlb	1.2	5	1	4	1	1	1	0
ctrace	1.4	19	58	7	3	143	3	0
autofs_expire	8.3	7	3	6	2	12	2	0
ptrace	15.4	3	1	15	1	2	1	0
raid	17.2	6	13	2	6	75	6	0
tty_io	17.8	1	3	4	3	11	3	0
ipoib_multicast	26.1	10	6	7	6	16	4	2
TOTAL			99		24		21	3

After Phase 1 (Warning Generation)

After Phase 2 (Warning Reduction)

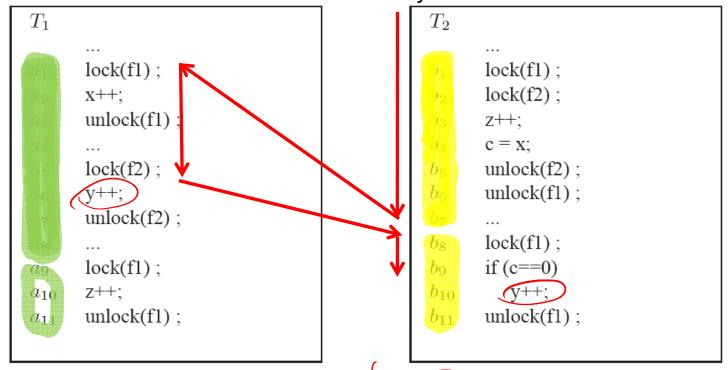
After Phase 3 (Model Checking)

CoBe Experiments

□ Phase 3: Model Checking

- Individual Warnings: POR + BMC
- Found the known data races in 8 of 9 drivers (and some more ...)
- (Note: Did not have driver harnesses, so some of these may be false bugs)

Witness No.	Symbolic POR + BMC			Witness No.	Symbolic POR + BMC		
	Depth	Time	Mem		Depth	Time	Mem
		(sec)	(MB)			(sec)	(MB)
jfs_dmap: 1	10	0.1	59	ctrace: 1	8	2	62
autofs_expire: 1	9	1.1	60	ctrace: 2	56	10 hr	1.2 G
autofs_expire: 2	29	128	144	ctrace: 3	92	2303	733
ptrace: 1	111	844	249	tty_io: 1	34	0.8	5.7
raid: 1	42	26.1	75	tty_io: 2	32	9.7	14
raid: 2	84	179	156	tty_io: 3	26	31	26
raid: 3	44	32.2	87	ipoib_multicast: 1	6	0.1	58
raid: 4	34	4.2	61	ipoib_multicast: 2	8	0.1	59
raid: 5	40	9.3	59	ipoib_multicast: 3	4	0.1	58
raid: 6	70	70	116	ipoib_multicast: 4	14	0.3	59


Practical Model Checking of Concurrent Programs

- ☐ In addition to state space explosion (as in sequential programs) the complexity bottleneck is exhaustive exploration of interleavings
- ✓ Multi-pronged approach for handling interleavings
 - ✓ Avoid interleavings altogether
 - √ Thread-modular reasoning
 - √ Rely on decomposition results for nested locks Strategy 1
 - ✓ Avoid redundant interleavings
 - ✓ Partial Order Reduction (POR)
 - ✓ Combine POR with symbolic model checking Strategy 2
 - ✓ Semantic/Property-based reduction in interleavings
 - ✓ Derive invariants using abstract interpretation Strategy 3
 - > Use property-driven pruning Strategy 4
- These are (mostly) orthogonal to other techniques
 - Shape analysis, Bounded context analysis, Stateless model checking, ...

Strategy 4: Property-Driven Pruning

Where is the data race?

Initial state: x=y=z=0

Error trace: 61-67, a1-a4, a5, 68-69,

Both are enabled There is a data conflict

Motivating Example

How would DPOR find it? ... it would take a while.

```
T<sub>1</sub>
...
lock(f1);
x++;
unlock(f1);
...
lock(f2);
y++;
unlock(f2);
...
lock(f1);
z++;
unlock(f1);
```

```
T_2
...

lock(f1);
lock(f2);
z^{++};
c = x;
unlock(f2);
unlock(f1);
...

lock(f1);
...

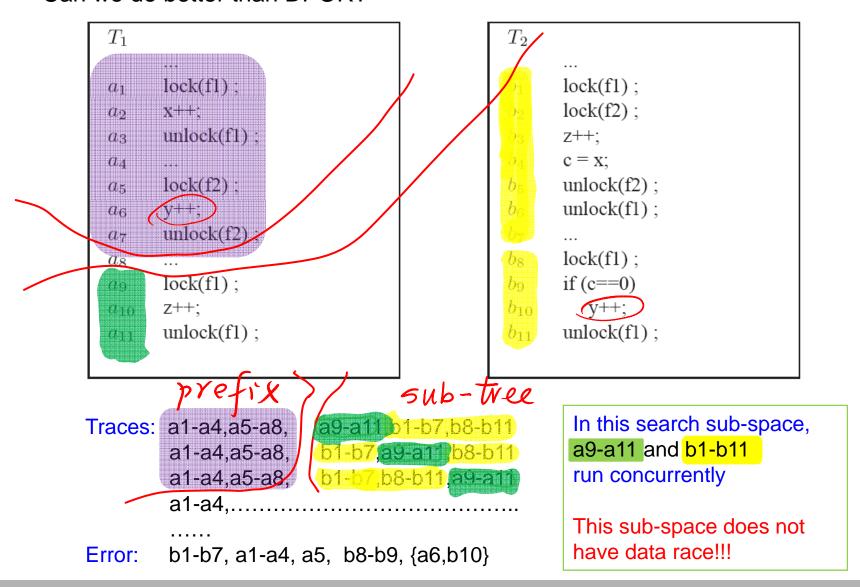
lock(f1);
unlock(f1);
unlock(f1);
unlock(f1);
unlock(f1);
unlock(f1);
```

```
Traces: a1-a4,a5-a8, a9-a11,b1-b7,b8-b11

DPOR a1-a4,a5-a8, b1-b7,a9-a11,b8-b11

a1-a4,a5-a8, b1-b7,b8-b11,a9-a11

a1-a4,a5-a8, b1-b7,b8-b11,a9-a11


a1-a4, a5-a8, b1-b7,b8-b11,a9-a11
```

```
systematic search
in a DFS order
```

January 09

Motivating Example

Can we do better than DPOR?

Lockset Analysis: Is the sub-space race-free?

For each variable access, compute the set of held locks (lockset)

```
T_1
       lock(f1):
       x\pm\pm:
a_0
       unlock(f1);
a_3
a_{4}
       lock(f2):
a_5
       v++;
a_{\kappa}
       unlock(f2);
a_7
a_8
        lock(f1):
        unlock(f1);
```

```
T_2
...
lock(f1);
lock(f2);
z++;
c=x;
unlock(f2);
unlock(f2);
unlock(f1);
...
lock(f1);
unlock(f1);
unlock(f1);
unlock(f1);
unlock(f1);
unlock(f1);
unlock(f1);
unlock(f1);
```

the intersection is not empty

(s) can not be enabled at the same time

In this search sub-space, a9-a11 and b1-b11 run concurrently

This sub-space does not have data race!!!

Lockset Analysis: Is the sub-space race-free?

RaceFreeSubSpace: Prune away equivalence classes that do not affect property

```
T_1
     lock(fil);
      x++;
a_2
      unlock(fl);
a_3
a_4
     lock(f2);
a_5
      _v++;
a_{6}
     unlock(f2):
a_7
a_8
      lock(f1);
      Z++;
      unlock(f1);
```

```
T_2
...

lock(f1);
lock(f2);
z^{++};
c = x;
unlock(f2);
unlock(f1);
...

b_8
lock(f1);
if (c==0)
b_{10}
y^{++};
unlock(f1);
unlock(f1);
```

Identifying the locksets is a thread-local computation → scalable

This reduction is beyond DPOR, but fits seamlessly with dynamic model checking

Property-Driven Pruning (PDP): Experiments

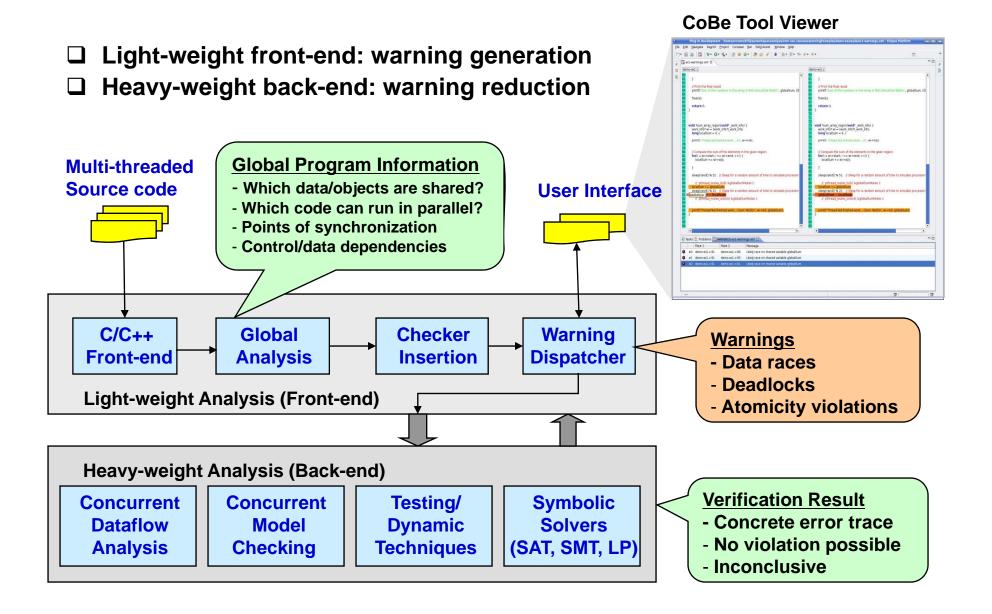
Test Program Runtime (s) # of Trans (k) # of Traces Race-free Chk															
Test Program						Runtii	ne (s)	# of Ir	ans (k)	All the second s	races	Race			
name	loc	thrd	gvar	accs	lock	race	dpor	PDP	dpor	PDP	dpor	PDP	chks	yes	skip
fdrd2	66	2	3	3	2	1	3	1	2	0.6	89	14	88	75	75
fdrd4	66	2	3	3	2	1	11	3	10	4	233	68	232	165	165
qsort	743	2	2	2000	5	0	17	8	12	8	4	1	2	2	2
pfscan-good	918	2	21	118	4	0	179	15	71	10	2519	182	398	217	217
pfscan-bug	918	2	21	39	4	1	3	1	1	1	31	10	5	5	6
aget-0.4	1098	3	5	72	1	0	183	1	103	0.1	3432	1	6	6	9
aget-0.4	1098	4	5	78	1	0	>1h	1	_	0.1	-	1	9	9	18
aget-0.4	1098	5	5	84	1	0	>1h	1	_	0.1	-	1	12	12	30
bzip2smp	6358	4	9	18	3	0	128	3	63	2	1465	45	48	5	5
bzip2smp	6358	5	9	18	3	0	203	4	99	2	2316	45	48	5	7
bzip2smp	6358	6	9	18	3	0	287	4	135	2	3167	45	48	5	9
bzip2smp2	6358	4	9	269	3	0	291	136	63	21	1573	45	48	5	5
bzip2smp2	6358	5	9	269	3	0	487	155	85	21	2532	45	48	5	7
bzip2smp2	6358	6	9	269	3	0	672	164	116	21	3491	45	48	5	9
bzip2smp2	6358	10	9	269	3	0	1435	183	223	21	7327	45	48	5	17

Reduction: (#A - #B)

Fusion: Dynamic Tests + Symbolic Analysis

- Target: Property-driven learning and pruning with DPOR
- Execute target program under a thread schedule to generate a concrete trace (one interleaving)
- Symbolically analyze the concrete trace
 - CHECK
 - Consider the observed transitions of the trace
 - Create a symbolic problem for checking all feasible interleavings of these transitions
 - PRUNE
 - Consider also (the abstractions of) the unobserved branches
 - Create a symbolic problem for checking all feasible interleavings
 - If no violation is possible, then skip the related backtrack point
- ☐ Continue executing target program under another thread schedule to generate a concrete trace
 - Avoid enumerating thread schedules already considered

Fusion: Dynamic Tests + Symbolic Analysis


Table 1. Comparing the performance of *Fusion* and *DPOR*

	Test Pr	ogram		Fus	sion (in C3)		DPOR (in Inspec		t)
name	# threads	global-ops	property	executions	transitions	time (s)		transitions	-
fa02-1	2	21	false	1	32	0.2	34	545	6.6
fa02-5	2	73	false	1	84	0.8	190	8349	47.5
fa02-10	2	138	false	1	149	1.4	390	29904	108.6
pBch4-5	2	28	false	2	59	0.5	64	472	13.8
pBch4-10	2	48	false	2	89	0.6	274	2082	55.9
pBch4-20	2	88	false	2	149	1.3	1144	10842	248.7
pBch4ok-1	2	12	true	4	49	1.9	5	50	1.4
pBch4ok-3	2	28	true	11	211	6.9	152	1445	32.7
pBch4ok-4	2	36	true	18	385	19.6	1164	10779	255.8
pBch4ok-5	2	44	true	27	641	40.1	-	-	>3600

Putting it All Together: ConSave Platform

- **☐** Existing Solutions
 - Testing/dynamic verification: poor coverage
 - Static program analysis: too many bogus warnings
 - Model checking: does not scale
- □ ConSave: Cooperative, Staged Framework
 - Generate warnings cheaply, reduce warnings by staging analyses
 - On-demand precise analysis
 - Precision supported by high performance SAT/SMT solvers
 - Highlights
 - Dynamic testing/verification combined with symbolic analysis
 - Concurrent dataflow analysis w/automatic transaction identification
 - Partial order reduction with symbolic model checking

ConSave Platform for Concurrent Program Verification

Summary and Other Challenges

□ Concurrent program verification

- Concurrency is pervasive, and very difficult to verify
- Many promising technologies in formal methods
 - Testing/dynamic verification, Static analysis, Model checking, ...
 - Controlling complexity of interleavings is key
- Accuracy in models AND efficiency of analysis are needed for practical impact
 - Don't give up too early on large models, on precision
 - Advancements in Decision Procedures (SAT, SMT, ...) offer hope
- Great opportunity, especially with proliferation of multi-cores

■ Better program analyses

- Pointer alias analysis, shared variable detection, ...
- Heap shapes and properties

■ Modular component interfaces

- Required for scaling up to large systems (MLOC)
- Practical difficulties can be addressed by systematic development practices, but there should be a clear return on invested effort