
Model Checking Concurrent Programs

Aarti GuptaAarti Gupta
agupta@nec-labs.com

Systems Analysis and Verification

http://www nec labs com

January 09 VMCAI 09: Model Checking Concurrent Programs

http://www.nec-labs.com

Acknowledgements

NEC Systems Analysis & Verification Group
– Gogul Balakrishnan
– Malay Ganai
– Franjo Ivancic
– Vineet Kahlon
– Weihong Li
– Nadia Papakonstantinoup
– Sriram Sankaranarayanan
– Nishant Sinha
– Chao Wang

Interns
– Himanshu Jain, Yu Yang, Aleksandr Zaks, …

January 09 VMCAI 09: Model Checking Concurrent Programs 2

Motivation

Key Computing Trends P ll l/M lti th d d P iKey Computing Trends Parallel/Multi-threaded Programming
– Difficult to get right

• manual parallelization
• dependencies due to shared data

– Difficult to debug
• too many interleavings of threads
• hard to reproduce scheduleMobile Server Gaming

– Single core solutions don’t work

High Performance, Low Power Thread 1 Thread 2 Thread 3 Thread 1 Thread 2

Thread 2 Thread 1 Thread 3 Thread 1 Thread 2
– Need multi-core solutions
– Need multi-core programming

Thread 2 Thread 1 Thread 3 Thread 1 Thread 2

Thread 2 Thread 3 Thread 2 Thread 1 Thread 1

Goal: Improve SW productivity in the development of concurrent programs
– Find concurrency bugs using powerful program verification & analysis

techniques: data races, deadlocks, atomicity violations

January 09 VMCAI 09: Model Checking Concurrent Programs

– Assist code understanding of concurrency aspects

3

Outline

Background

Model Checking Concurrent ProgramsModel Checking Concurrent Programs
– Results for Interacting Pushdown Systems

Practical Model Checking of Concurrent ProgramsPractical Model Checking of Concurrent Programs
– Four main strategies

ConSave PlatformConSave Platform

Summary & Challenges

January 09 VMCAI 09: Model Checking Concurrent Programs 4

Verification Approach: e g Model Checking

Automatic Property Verification

Verification Approach: e.g. Model Checking
– Exhaustive state space exploration
– Maintains a representation of visited states (explicit states, BDDs, ckt graphs …)
– Expensive, need abstractions and approximations

Falsification Approach: e.g. Bounded Model Checking
– State space search for bugs (counter-examples) or test case inputs
– Typically does not maintain representation of visited states
– Less expensive, but need good search heuristics

M d l Ch ki AGModel Checking AG p
Does the set of states
reachable from s0
contain a bad state(s)?

s0 !p

Bounded Model Checking
Is there is a path from
the initial state s0
to the bad state(s)?

TR
Step 1

TR
Step 2

TR
Step 4

TR
Step 3

!p?

January 09 VMCAI 09: Model Checking Concurrent Programs 5

to the bad state(s)? Step 1 Step 2 Step 4Step 3

Extracting Program Models

C ProgramC Program

W OTransition Relation

Symbolic FSM Model
M = (S,s0,TR,L)1: void bar() {

2: int x = 3 , y = x-3 ;

Transformed
C

Program
W

X Y

OTransition Relation3: while (x <= 4) {
4: y++ ;
5: x = foo(x);
6: } CFG

?

Latches
Present State Next State

}
7: y = foo(y);
8: }
9:
10: int foo (int l) {

CFG
Control Flow

Graph

Source-to-source transformations
– For modeling pointers, arrays, structures …
– For automatic instrumentation of checkers

10: int foo (int l) {
11: int t = l+2 ;
12: if (t>6)
13: t - = 3; For automatic instrumentation of checkers

Control Flow Graph: Intermediate Representation
– Well-studied optimizations provide simplification and

reduction in size of verification models

14: else
15: t --;
16: return t;
17: }

January 09 VMCAI 09: Model Checking Concurrent Programs 6

– Allows separation of model building phase from model
checking phase

17: }

Modeling Pointers (src-to-src transformations)

int *p;
int x,y;

p=&x;
*p=expr;

p=&y;
assert(*p > 10)…

Pointers replaced by auxiliary variables (introduce p’ to track *p)
Reads/writes transformed to conditional assignments[Semeria & De Micheli 98]

p &y;

g []

uint p;
int p’;

p=&x;
p’=x; p’=expr;

x= (p==&x)?expr:x; assert(p’ > 10)…int p ;
int x,y; p=&y;

p’=y;

x (p &x)?expr:x;
y= (p==&y)?expr:y;

assert(p > 10)…

points-to(p) = {x, y}

Requires sound pointer analysis to derive sound points-to sets
– We use fast (flow/context insensitive) Steensgaard pointer analysis

January 09 VMCAI 09: Model Checking Concurrent Programs 7

We use fast (flow/context insensitive) Steensgaard pointer analysis
– Can add Andersen’s analysis or context-sensitivity also [Kahlon PLDI 08]

Translations of CFG to Symbolic Models

Our target for model checking: Finite state verification modelOur target for model checking: Finite state verification model
– Recursive functions are also modeled using a bounded call stack

• Alternative: Boolean programs [Ball & Rajamani 01]
– Recursive data structures are bounded up to some user-chosen depth

This yields a CFG with only int type data variables, i.e. a numeric program
– Program Counter (PC) variables are used to encode basic blocks 10
– Each data variable is interpreted as:

• a vector of state-bits for bit-precise SAT- or SMT-based model checking
• an infinite integer for static analysis or polyhedra-based model checking

s = x+2;
t = x-1;t > 6 ! (t > 6)

CFG => Finite State (control + data) Machine
Basic blocks => control states (PC variables)
Program variables => data states
G f

00

t- = 3; t--;

s += t;

Guarded transitions => TR for control states
Parallel assignments => TR for data states
Loop back-edges => transitions between control states

FSM Bi i d l

1001

January 09 VMCAI 09: Model Checking Concurrent Programs 8

s + t; FSMs: Bit-precise accurate models
Extended FSMs: finite control, but infinite data (integers)11

VeriSol Model Checking Platform

E i f fi di B
[Ganai et al. 05], [Gupta et al. 06]

BMC
Find bugs
efficiently

Engines for finding Bugs

Engines for finding Proofs

BMC: Bounded Model Checking
UMC: Unbounded Model Checking
EMM: Efficient Memory Modeling

Distributed BMC
Find bugs on network

Proof Engines
Proves correctness of

properties using

efficientlyEngines for finding Proofs y g
PBIA: Proof-Based Iterative Abstraction

Find bugs on network
of workstations

p p g
Unbounded Model

Checking and Induction Efficient
Representation

(circuit simplifier)
SMT solvers, BDDs+Polyhedra

BMC + EMM
Find bugs in embedded
memory systems using

BMC + EMM + PBIA
Reduce model size by
identifying & removing

irrelevant memories

Boolean Solver
(SAT, BDD)

, y

BMC + PBIA
Reduce model size by
identifying & removing

y y g
Efficient Memory Modelirrelevant memories

and logic

January 09 VMCAI 09: Model Checking Concurrent Programs 9

identifying & removing
irrelevant logic

Dataflow Analysis for Concurrent Programs

Close relationship between Dataflow Analysis for sequential programs
and the model checking problem for Pushdown Systems (PDS)

[Schmidt, Bouajjani et.al., Walukeiwicz]

Various extensions of the basic PDS framework have been proposed
leading to useful generalizations of the basic dataflow analysis framework

[Reps, Schwoon, Jha et al.]

Analogous to the sequential case, dataflow analysis for concurrent
programs reduces to the model checking problem for interacting PDSprograms reduces to the model checking problem for interacting PDS
systems

However reachability is undecidable for PDSs with Pairwise RendezvousHowever, reachability is undecidable for PDSs with Pairwise Rendezvous
[Ramalingam 01]

January 09 VMCAI 09: Model Checking Concurrent Programs 10

Model Checking for Interacting PDS

Reachability is undecidable for PDSs with Pairwise Rendezvous
How to get around the undecidability barrier?

– Give up precision
Th d d l i• Thread-modular reasoning

• Over-approximation techniques [Chaki et al. 06]
– Restrict the synchronization/communication models

• PA processes [Esparza and Podelski]PA processes [Esparza and Podelski]
• Constrained Dynamic Pushdown Networks [Bouajjani et al.]
• Asynchronous Dynamic Pushdown Network [Bouajjani et al.]

– Give up soundness
• Bounded number of context switches [Qadeer & Rehof 05, CHESS]
• Dataflow analysis for bounded-context systems [Reps et al.]

We focus on patterns of synchronization primitives
– In practice, recursion and synchronization are relatively “well-behaved”
– Decidable for PDSs interacting via nested locks [Kahlon, Ivancic & G 05]

Undecidable for PDSs interacting via non nested locks

January 09 VMCAI 09: Model Checking Concurrent Programs 11

– Undecidable for PDSs interacting via non-nested locks

Model Checking Double-indexed LTL Properties

[Kahlon & G POPL 07]

For L(F,G) and L(U) the model checking problem is undecidable even for
system comprised of non-interacting PDSs

[Kahlon & G, POPL 07]

– For decidability, restriction to fragments L(G, X) and L(X, F, infF)

For PDSs interacting via nested locks the model checking problem is
d id bl l f th f tdecidable only for the fragments

– L(G, X)
– L(X, F, infF)

For PDSs interacting via
– Pairwise rendezvous, or
– Asynchronous rendezvous, orAsynchronous rendezvous, or
– Broadcasts
the model checking problem is decidable only for L(G, X)

January 09 VMCAI 09: Model Checking Concurrent Programs 12

Practical Model Checking of Concurrent Programs

I dditi t t t l i (i ti l)In addition to state space explosion (as in sequential programs)
the complexity bottleneck is exhaustive exploration of interleavings

M lti d h f h dli i t l iMulti-pronged approach for handling interleavings
– Avoid interleavings altogether

• Thread-modular reasoning
R l d iti lt f t d l k St t 1• Rely on decomposition results for nested locks

– Avoid redundant interleavings
• Partial Order Reduction (POR)

C bi POR ith b li d l h ki

Strategy 1

S 2• Combine POR with symbolic model checking
– Semantic/Property-based reduction in interleavings

• Derive invariants using abstract interpretation
U d i i

Strategy 2

Strategy 3
• Use property-driven pruning

These are (mostly) orthogonal to other techniques
Sh l i B d d t t l i St t l d l h ki

Strategy 4

January 09 VMCAI 09: Model Checking Concurrent Programs

– Shape analysis, Bounded context analysis, Stateless model checking, …

13

Strategy 1: Avoid Interleavings by Decomposition

A concurrent multi threaded program uses locks in a nested fashion iffA concurrent multi-threaded program uses locks in a nested fashion iff
along every computation, each thread can only release that lock which it
acquired last, and that has not yet been released

Example
f() { g(){ h(){

acquire(b) ; release(b); acquire(c);() () ()
g(); // h(); acquire(c); release(b);
release(c);

} } }

f -> g: nested locks
f -> h: non-nested locks

Programming guidelines typically recommend that programmers use
locks in a nested fashion
Locks are guaranteed to be nested in Java1 4 and C#

January 09 VMCAI 09: Model Checking Concurrent Programs 14

g 1.4

Acquisition History: Motivation

Thread1 () { Thread2 () {
f1: acquire(a); g1: acquire(c);f1: acquire(a); g1: acquire(c);
f2: acquire(c); g2: acquire(a);
f3: release(c); g3: release(a);
f4: Error1; g4: Error2;

} }

Question: Is it possible to reach Error states simultaneously?

Answer: f4 and g4 are not simultaneously reachable even though
Lock-Set(f4) ∩ Lock-Set(g4) = ∅ [Savage et al.]

Tracking Lock Sets is not enoughTracking Lock-Sets is not enough

January 09 VMCAI 09: Model Checking Concurrent Programs 15

Acquisition History: Definition

Thread1 () { Thread2 () {
f1: acquire(a); g1: acquire(c);
f2: acquire(c); g2: acquire(a);
f : release(c); g : release(a);f3: release(c); g3: release(a);
f4: Error1; g4: Error2;

} }

The acquisition history of a lock k at a control location of thread T
is the set of locks acquired by T since the last acquisition of k by T

– Acq-Hist (f4, a) = {c}
A Hi t () { }– Acq-Hist (g4, c) = {a}

Acq-Hist(f1, k1) is consistent with Acq-Hist(g2, k2)
iff the following does not hold:iff the following does not hold:
k1 ∈ Acq-Hist(g2, k2) and k2 ∈ Acq-Hist(f1, k1)

Check on consistent Acq-Hist avoids circular dependencies that can

January 09 VMCAI 09: Model Checking Concurrent Programs 16

lead to deadlocks, which make states unreachable

Decomposition Result for Nested Locks
[Kahlon et al. CAV 05]

States c1 and c2 in Thread1 and Thread2 , respectively, are
simultaneously reachable iff

– Lock-Set(c1) ∩ Lock-Set(c2) = ∅
– There exists some path with consistent acquisition histories

i.e., where there do not exist locks k and l such that :
– l ∈ Acq-Hist (c1, k)
– k ∈ Acq-Hist (c2, l)

Corollary: By tracking acquisition histories we can decompose model
checking for a concurrent program to its individual threads

– Augment states with acquisition histories AH
– Reachability: There exist consistent acquisition histories AH1 and

AH h th t th t d l l t t (AH) d (AH)AH2 such that the augmented local states (c1, AH1) and (c2, AH2)
are reachable individually in T1 and T2 , respectively

– Polynomial in number of states, exponential in number of locks
Context sensitive static analysis results in small locksets and AHs

January 09 VMCAI 09: Model Checking Concurrent Programs 17

– Context-sensitive static analysis results in small locksets and AHs

Model Checking by Decomposition

Thread
T2|| || ||

Thread
T1

Augment threads by keeping lock
acquisition history

Sequential Program
MODEL CHECKER

(F-Soft)

Reachability in multi-threaded program with nested lock access is
reduced to model checking individual threads [Kahlon et al. CAV 05]
– Avoids state explosion arising due to concurrency
Model checking LTL properties for threads with nested locks

January 09 VMCAI 09: Model Checking Concurrent Programs 18

Model checking LTL properties for threads with nested locks
[Kahlon et al. LICS 06, POPL 07]

Strategy 2: Avoid Redundant Thread Interleavings

Partial Order Reduction (POR)
– Explore a restricted set of interleavings,

2
g

ideally one from each equivalence class
– At each state, explore the set of

Persistent transitions – the smaller the
better

a := 2 b:= 1

better
– Commonly used in explicit state model

checking [SPIN, VeriSoft] a := 2
b := 1

Transactions [Lipton]
– Find atomic code regions

(transactions), e.g. by lock analysis
– Consider context switches only at

transaction boundaries [Stoller 02]

January 09 VMCAI 09: Model Checking Concurrent Programs 19

[]

Persistent Sets using Acquisition Histories

ExampleExample
Thread1 (){ Thread2 (){

f1: acquire(a); g1: acquire(c);
f2: acquire(c); g2: acquire(a);
f3: release(c); g3: release(a);
f4: ShVarAccess1; g4: ShVarAccess2;
f5: release(a); g5: release(c);

} }} }

Consider global state (f4, g1)
Lock-set (f4) = {a}, Lock-set (g1) = {c}(4) { } (g1) { }
Transition from g1 to g2 is included in the persistent set based on Lock-sets
However, there is no need for a context switch at f4
Why?
Thread2 cannot access ShVar at g without Thread1 releasing lock a firstThread2 cannot access ShVar at g4 without Thread1 releasing lock a first
Thus the transition from g1 to g2 is not included in the persistent set

Bottomline

January 09 VMCAI 09: Model Checking Concurrent Programs 20

Persistent sets based on Lock Acq-Hist are more refined than those
based on Lock-sets [Kahlon, G. and Sinha, CAV 06]

Combining POR + Symbolic Model Checking

P ti l O d R d ti (POR)Partial Order Reduction (POR)
– Avoid redundant interleavings
– Use acquisition histories to refine persistent sets

Symbolic Model Checking (SMC)
– Compact representation for large state spaces

SAT BDDS SMT S l– SAT, BDDS, SMT Solvers

Goal: To combine them in a synergistic manner

Implementation
Build a circuit based model for each thread (as before)
Use a scheduler that adds partial order + transaction constraintsUse a scheduler that adds partial order + transaction constraints
Carry out symbolic model checking using technique of choice
- Separation of model building and verification stages allows flexibility

January 09 VMCAI 09: Model Checking Concurrent Programs 21

Generic Symbolic Model Checker Framework

Shared variable detection
[Kahlon et al. 07]

Lockset analysis

Thread-safe static analysis

Model Generation

y

SchedulerScheduler [SPIN, VeriSoft]

[Kahlon et al. CAV 06]
[Wang et al. TACAS 08]

[Ganai et al. SPIN 08]

Symbolic Constraints
For Scheduler

Constraints
POR, Transactions

January 09 VMCAI 09: Model Checking Concurrent Programs 22

MC Engine (BMC)Symbolic Model Checking

Case study: Daisy file system

C t ft b h k [Q d 04]• Concurrent software benchmark [Qadeer 04]
• 1 KLOC of C-like Java (manually converted to C)
• Simple data structures
• Fine-grained concurrencyg y
• Variety of correctness properties

• Experimental results for finding 3 known races [Kahlon et al. CAV 06]

SAT-based
BMC with …

Interleaved
Execution

POR
Reduction

POR +
Transactions

Race1
20 min
6.5 MB

3 sec
5.7 MB

1.4 sec
5.5 MB

10 hrs 12 min
Race2 -

10 hrs
950 MB

12 min
517 Mb

Race3 -
40 hrs
1870 MB

1.67 hrs
902 MB

January 09 VMCAI 09: Model Checking Concurrent Programs 23

3 1870 MB 902 MB

Sound Reduction of Thread Interleavings

S f id tifi ti f fli t /t ti d t ti ll ith tSo far, identification of conflicts/transactions was done statically without
considering dataflow facts

– Persistent transitions: if they access the same shared variable now, or
sometime in the future

– “Sometime in the future”: Usually over-approximated by reachability in CFG
– May lead to too many thread interleavings

Strategy 3: Reduce number of thread interleavings by using concurrent
dataflow analysis [Kahlon et al. TACAS 09]

– Reason about simultaneous reachability of global control states
L t t ti l i f d ti b f d l h k t k– Let static analysis perform more reductions, before model checker takes over

Strategy 4: Use Dynamic POR for precise information on conflicts
– Backtracks in DFS only if there is an actual conflict [Flanagan & Godefroid 05]Backtracks in DFS only if there is an actual conflict [Flanagan & Godefroid 05]
– We further reduce number of backtracks by property-driven pruning

[Wang et al. ATVA 08]

January 09 VMCAI 09: Model Checking Concurrent Programs

Note: These reductions are sound, unlike bounded analysis as in [CHESS]

24

void Alloc Page () { void Dealloc Page ()

Strategy 3: Motivating Example

void Alloc_Page () {
a = c;
pt_lock(&plk);
if (pg_count >= LIMIT) {

t it (& li & lk)

void Dealloc_Page ()
pt_lock(&plk);
if (pg_count == LIMIT) {

sh = 2;
d (t)pt_wait (&pg_lim, &plk);

incr (pg_count);
pt_unlock(&plk);
sh1 = sh;

decr (pg_count);
sh1 = sh;
pt_notify (&pg_lim, &plk);
pt_unlock(&plk);

} else {
pt_lock (&count_lock);
pt_unlock (&plk);
page = alloc_page();

} else {
pt_lock (&count_lock);
pt_unlock (&plk);
decr (pg_count);

sh = 5;
if (page)

incr (pg_count);
pt unlock(&count lock);

sh = 4;
pt_unlock(&count_lock);

end-if
}pt_unlock(&count_lock);

end-if
b = a+1;

}

}

Consider all possible pairs of locations
where shared variables are accessed

January 09 VMCAI 09: Model Checking Concurrent Programs 25

(e.g. for checking data races)

Motivating Example: Lockset Analysis

void Alloc Page () { void Dealloc Page ()void Alloc_Page () {
a = c;
pt_lock(&plk);
if (pg_count >= LIMIT) {

pt wait (&pg lim &plk);

void Dealloc_Page ()
pt_lock(&plk);
if (pg_count == LIMIT) {

sh = 2;
d (t)pt_wait (&pg_lim, &plk);

incr (pg_count);
pt_unlock(&plk);
sh1 = sh;

} else {

decr (pg_count);
sh1 = sh;
pt_notify (&pg_lim, &plk);
pt_unlock(&plk);

} else {
pt_lock (&count_lock);
pt_unlock (&plk);
page = alloc_page();

} else {
pt_lock (&count_lock);
pt_unlock (&plk);
decr (pg_count);

sh = 5;
if (page)

incr (pg_count);
pt_unlock(&count_lock);

sh = 4;
pt_unlock(&count_lock);

end-if
}

end-if
b = a+1;

}

}

No data race
Sim ltaneo sl nreachable

January 09 VMCAI 09: Model Checking Concurrent Programs 26

Simultaneously unreachable
Due to locksets (plk)

void Dealloc Page ()void Alloc Page () {

Motivating Example: Synchronization Constraints

void Dealloc_Page ()
pt_lock(&plk);
if (pg_count == LIMIT) {

sh = 2;
d (t)

void Alloc_Page () {
a = c;
pt_lock(&plk);
if (pg_count >= LIMIT) {

t it (& li & lk) decr (pg_count);
sh1 = sh;
pt_notify (&pg_lim, &plk);
pt_unlock(&plk);

pt_wait (&pg_lim, &plk);
incr (pg_count);
pt_unlock(&plk);
sh1 = sh;

} else {
pt_lock (&count_lock);
pt_unlock (&plk);
decr (pg_count);

} else {
pt_lock (&count_lock);
pt_unlock (&plk);
page = alloc_page();

sh = 4;
pt_unlock(&count_lock);

end-if
}

sh = 5;
if (page)

incr (pg_count);
pt unlock(&count lock); }pt_unlock(&count_lock);

end-if
b = a+1;

} No data race
Sim ltaneo sl nreachable

January 09 VMCAI 09: Model Checking Concurrent Programs 27

Simultaneously unreachable
Due to wait-notify ordering constraint

Motivating Example

void Alloc Page () { void Dealloc Page ()void Alloc_Page () {
a = c;
pt_lock(&plk);
if (pg_count >= LIMIT) {

t it (& li & lk)

void Dealloc_Page ()
pt_lock(&plk);
if (pg_count == LIMIT) {

sh = 2;
d (t)pt_wait (&pg_lim, &plk);

incr (pg_count);
pt_unlock(&plk);
sh1 = sh;

decr (pg_count);
sh1 = sh;
pt_notify (&pg_lim, &plk);
pt_unlock(&plk);

} else {
pt_lock (&count_lock);
pt_unlock (&plk);
page = alloc_page();

} else {
pt_lock (&count_lock);
pt_unlock (&plk);
decr (pg_count);

sh = 5;
if (page)

incr (pg_count);
pt unlock(&count lock);

sh = 4;
pt_unlock(&count_lock);

end-if
} How do we get these invariants?pt_unlock(&count_lock);

end-if
b = a+1;

}

}

Data race?

NO, due to invariants at these locations
pg_count is in (-inf, LIMIT) in T1

t i i [LIMIT +i f) i T2

Abstract Interpretation of course :)

January 09 VMCAI 09: Model Checking Concurrent Programs 28

Data race? pg_count is in [LIMIT, +inf) in T2
Therefore, these locations are not simultaneously reachable

Transaction Graphs

Intuitively a Transaction Graph is a product graph over control statesIntuitively, a Transaction Graph is a product graph over control states
– Not all product (global) control states, keep only the reachable control states
– An edge denotes an uninterruptible sequence of actions by a single thread
– Note: What is uninterruptible depends on global state, not just local state

Two main (inter-related) problems
– How to find which global control states (nodes) are reachable?
– How to find uninterruptible sequences of actions (transactions)?

We use an iterative approach (described next)
– Unreachable nodes
-> May lead to larger transactions
-> Larger transactions correspond to reduced interference (interleavings)
> Reduced interference may lead to more proofs of unreachability-> Reduced interference may lead to more proofs of unreachability

Use abstract interpretation over the transaction graph to find program
invariants over the concurrent program

January 09 VMCAI 09: Model Checking Concurrent Programs

invariants over the concurrent program
– Invariants are used to slice away parts of CFGs, leading to reduced interference

29

Transaction Graph Example

 (f){ p0
pos > SLOTS pos <= SLOTS

s2
s0

s1
repeat (forever){
lock(posLock);
while (pos > SLOTS){

unlock(posLock);
i (f ll)

p1

pos > 0

pos += 1

s0wait(full);
lock(posLock);

}
data[pos++] := ...;
if (0){

full?

pos > 0

emp!

if (pos > 0){
signal(emp);

}
unlock(posLock);

}}

p0,q0

1

s2
Nodes where context
switches to be considered

p1,q0
p0,q1t2

t0

s1 s0

January 09 VMCAI 09: Model Checking Concurrent Programs

p1,q1t1
t0

30

Iterative Refinement of Transaction Graphs
[Kahlon, Sankaranarayanan & G, TACAS 09]

Transaction Graph: Abstract Representation for Thread Interleavings
– At any stage, the transaction graph captures the set of interleavings that need to

be considered for sound static analysis or model checking

Initial Transaction Graph
– Use static POR to consider non-redundant interleavings

O er control states onl need to consider CFL reachabilit• Over control states only, need to consider CFL reachability
– Use synchronization constraints to eliminate unreachable nodes

• For example, lock-based analysis, or wait-notify ordering constraints
• Precise transaction identification under synchronization constraints: basedPrecise transaction identification under synchronization constraints: based

on use of Parikh-bounded languages [Kahlon 08]

Iterative Refinement
Repeat
– Compute range, octagonal, or polyhedral invariants over the transaction graph
– Use invariants to prove nodes unreachable and to simplify CFGs (slicing, …)

R t t ti (t ti POR h i ti) th i lifi d CFG

January 09 VMCAI 09: Model Checking Concurrent Programs

– Re-compute transactions (static POR, synchronization) on the simplified CFGs
Until transactions cannot be refined further

31

Abstract Interpretation over Transaction Graphs
s2 [Kahlon, Sankaranarayanan & G, TACAS 09]

p0,q0

p0,q1
s1 s0

p, q <ϕ, ψ >

p1,q0
p0,q1

p1 q1

t2

t1
t0

p’, q’ <ϕ’, ψ’ >

Transaction by P

Compute invariants <ϕ, ψ > at each node <p, q>
– ϕ holds over the state of thread P (shared + local)

p1,q1t1 p , q ϕ , ψ

ψ’ = Meld (ϕ’, ψ)

ϕ holds over the state of thread P (shared + local)
– ψ holds over the state of thread Q (shared + local)

<ϕ, ψ > must satisfy the consistency condition over shared variables
– They must agree on values of the shared variables, i.e. ϕ |shared ≡ ψ |shared

Basic operation: Forward propagation (post) over transactional edge
– Computed for each edge by sequential static analysis

Melding operator : for maintaining consistency
After post condition <ϕ ψ > → <ϕ’ ψ > may also need to update ψ to ψ’

January 09 VMCAI 09: Model Checking Concurrent Programs

– After post-condition <ϕ, ψ > → <ϕ , ψ >, may also need to update ψ to ψ
– Meld (ϕ, ψ) = ψ’, such that ψ ⊆ ψ ’ and ψ’ |shared ≡ ϕ |shared

32

Application: Detection of Data Races

Implemented in a tool called CoBe (Concurrency Bench)Implemented in a tool called CoBe (Concurrency Bench)

Phase 1: Static Warning Generation
– Shared variable detectionShared variable detection
– Lockset analysis
– Generate warnings at global control states (c1, c2) when

• the same shared variable is accessed, and
• at least one access is a write operation

Phase 2: Static Warning Reduction
– Create a Transaction Graph, and perform static reachability analysis

• POR reductions, synchronization constraints, sound invariants
– If (c1, c2) is proved unreachable, then eliminate the warning

Phase 3: Model Checking
Otherwise create a model for model checking reachability of (c1 c2)– Otherwise, create a model for model checking reachability of (c1, c2)

• Slicing, constant propagation, enforcing invariants: lead to smaller models
• Makes model checking viable
• Provides a concrete error trace

January 09 VMCAI 09: Model Checking Concurrent Programs 33

CoBe: Experiments

Li d i d i ith k d t bLinux device drivers with known data race bugs

Linux Driver KLOC #Sh Vars #Warnings Time # After Time #Witness #Unknown
() I i () MC(sec) Invariants (sec) MC

pci_gart 0.6 1 1 1 1 4 0 1
jfs_dmap 0.9 6 13 2 1 52 1 0
hugetlb 1.2 5 1 4 1 1 1 0
ctrace 1.4 19 58 7 3 143 3 0
autofs_expire 8.3 7 3 6 2 12 2 0
ptrace 15.4 3 1 15 1 2 1 0
raid 17.2 6 13 2 6 75 6 0
tty_io 17.8 1 3 4 3 11 3 0
ipoib_multicast 26.1 10 6 7 6 16 4 2

TOTAL 99 24 21 3

After Phase 1 (Warning Generation)

After Phase 2 (Warning Reduction)

January 09 VMCAI 09: Model Checking Concurrent Programs 34

After Phase 3 (Model Checking)

CoBe Experiments

Ph 3 M d l Ch kiPhase 3: Model Checking
– Individual Warnings: POR + BMC
– Found the known data races in 8 of 9 drivers (and some more …)
– (Note: Did not have driver harnesses so some of these may be false bugs)(Note: Did not have driver harnesses, so some of these may be false bugs)

Witness No. Witness No.
Depth Time Mem Depth Time Mem
Symbolic POR + BMC Symbolic POR + BMC

Depth Time Mem Depth Time Mem
(sec) (MB) (sec) (MB)

jfs_dmap: 1 10 0.1 59 ctrace: 1 8 2 62
autofs_expire: 1 9 1.1 60 ctrace: 2 56 10 hr 1.2 G
autofs_expire: 2 29 128 144 ctrace: 3 92 2303 733
ptrace: 1 111 844 249 tty_io: 1 34 0.8 5.7
raid: 1 42 26.1 75 tty_io: 2 32 9.7 14
raid: 2 84 179 156 tty io: 3 26 31 26raid: 2 84 179 156 tty_io: 3 26 31 26
raid: 3 44 32.2 87 ipoib_multicast: 1 6 0.1 58
raid: 4 34 4.2 61 ipoib_multicast: 2 8 0.1 59
raid: 5 40 9.3 59 ipoib_multicast: 3 4 0.1 58

b l

January 09 VMCAI 09: Model Checking Concurrent Programs 35

raid: 6 70 70 116 ipoib_multicast: 4 14 0.3 59

Practical Model Checking of Concurrent Programs

I dditi t t t l i (i ti l)In addition to state space explosion (as in sequential programs)
the complexity bottleneck is exhaustive exploration of interleavings

M lti d h f h dli i t l iMulti-pronged approach for handling interleavings
Avoid interleavings altogether

Thread-modular reasoning
R l d iti lt f t d l k St t 1Rely on decomposition results for nested locks

Avoid redundant interleavings
Partial Order Reduction (POR)
C bi POR ith b li d l h ki

Strategy 1

S 2Combine POR with symbolic model checking
Semantic/Property-based reduction in interleavings

Derive invariants using abstract interpretation
U d i i

Strategy 2

Strategy 3
Use property-driven pruning

These are (mostly) orthogonal to other techniques
Sh l i B d d t t l i St t l d l h ki

Strategy 4

January 09 VMCAI 09: Model Checking Concurrent Programs

– Shape analysis, Bounded context analysis, Stateless model checking, …

36

Strategy 4: Property-Driven Pruning

Where is the data race?Where is the data race? Initial state: x=y=z=0

Error trace: b1-b7, a1-a4, a5, b8-b9, {a6,b10}

January 09 VMCAI 09: Model Checking Concurrent Programs 37

Motivating Example

How would DPOR find it? it would take a whileHow would DPOR find it? … … it would take a while.

Traces: a1-a4,a5-a8, a9-a11,b1-b7,b8-b11
a1-a4,a5-a8, b1-b7,a9-a11,b8-b11
a1-a4,a5-a8, b1-b7,b8-b11,a9-a11
a1-a4,………………………………….

DPOR
reduction

January 09 VMCAI 09: Model Checking Concurrent Programs 38

a1 a4,………………………………….
……

Error: b1-b7, a1-a4, a5, b8-b9, {a6,b10}

Motivating Example

Can we do better than DPOR?Can we do better than DPOR?

Traces: a1-a4,a5-a8, a9-a11,b1-b7,b8-b11
a1-a4,a5-a8, b1-b7,a9-a11,b8-b11
a1-a4,a5-a8, b1-b7,b8-b11,a9-a11
a1-a4,…………………………………..

In this search sub-space,
a9-a11 and b1-b11
run concurrently

January 09 VMCAI 09: Model Checking Concurrent Programs 39

a1 a4,…………………………………..
……

Error: b1-b7, a1-a4, a5, b8-b9, {a6,b10}
This sub-space does not
have data race!!!

Lockset Analysis: Is the sub-space race-free?

For each variable access compute the set of held locks (lockset)For each variable access, compute the set of held locks (lockset)

In this search sub-space,
a9-a11 and b1-b11
run concurrently

January 09 VMCAI 09: Model Checking Concurrent Programs 40

This sub-space does not
have data race!!!

Lockset Analysis: Is the sub-space race-free?

RaceFreeSubSpace: Prune away equivalence classes that do not affect propertyRaceFreeSubSpace: Prune away equivalence classes that do not affect property

Identifying the locksets is a thread-local computation scalable

This reduction is beyond DPOR but fits seamlessly with dynamic

January 09 VMCAI 09: Model Checking Concurrent Programs

This reduction is beyond DPOR, but fits seamlessly with dynamic
model checking

41

Property-Driven Pruning (PDP): Experiments

January 09 VMCAI 09: Model Checking Concurrent Programs 42

Fusion: Dynamic Tests + Symbolic Analysis

T t P t d i l i d i ith DPORTarget: Property-driven learning and pruning with DPOR

Execute target program under a thread schedule to generate a concrete
trace (one interleaving)trace (one interleaving)
Symbolically analyze the concrete trace
– CHECK

• Consider the observed transitions of the trace• Consider the observed transitions of the trace
• Create a symbolic problem for checking all feasible interleavings of

these transitions
– PRUNEPRUNE

• Consider also (the abstractions of) the unobserved branches
• Create a symbolic problem for checking all feasible interleavings
• If no violation is possible then skip the related backtrack pointIf no violation is possible, then skip the related backtrack point

Continue executing target program under another thread schedule to
generate a concrete trace
– Avoid enumerating thread schedules already considered

January 09 VMCAI 09: Model Checking Concurrent Programs

Avoid enumerating thread schedules already considered

43

Fusion: Dynamic Tests + Symbolic Analysis

January 09 VMCAI 09: Model Checking Concurrent Programs 44

Putting it All Together: ConSave Platform

Existing Solutions
– Testing/dynamic verification: poor coverage
– Static program analysis: too many bogus warningsStatic program analysis: too many bogus warnings
– Model checking: does not scale

ConSave: Cooperative, Staged Frameworkp , g
– Generate warnings cheaply, reduce warnings by staging analyses

• On-demand precise analysis
• Precision supported by high performance SAT/SMT solverspp y g p

– Highlights
• Dynamic testing/verification combined with symbolic analysis
• Concurrent dataflow analysis w/automatic transaction identificationConcurrent dataflow analysis w/automatic transaction identification
• Partial order reduction with symbolic model checking

January 09 VMCAI 09: Model Checking Concurrent Programs 45

ConSave Platform for Concurrent Program Verification
CoBe Tool Viewer

Light-weight front-end: warning generation
Heavy-weight back-end: warning reduction

Multi-threaded
Source code

Global Program Information
- Which data/objects are shared?
- Which code can run in parallel?
- Points of synchronization

C t l/d t d d i

User Interface

C/C++ Checker Global Warning Warnings

- Control/data dependencies

Front-end InsertionAnalysis Dispatcher

Light-weight Analysis (Front-end)

Warnings
- Data races
- Deadlocks
- Atomicity violations

Symbolic
Solvers

(SAT SMT LP)

Heavy-weight Analysis (Back-end)
Verification Result
- Concrete error trace
- No violation possible

Testing/
Dynamic

Techniques

Concurrent
Model

Checking

Concurrent
Dataflow
Analysis

January 09 VMCAI 09: Model Checking Concurrent Programs 46

(SAT, SMT, LP) o o at o poss b e
- Inconclusive

TechniquesChecking Analysis

Summary and Other Challenges

C t ifi tiConcurrent program verification
– Concurrency is pervasive, and very difficult to verify
– Many promising technologies in formal methods

• Testing/dynamic verification Static analysis Model checkingTesting/dynamic verification, Static analysis, Model checking, …
• Controlling complexity of interleavings is key

– Accuracy in models AND efficiency of analysis are needed for practical impact
• Don’t give up too early on large models, on precision
• Advancements in Decision Procedures (SAT, SMT, …) offer hope

– Great opportunity, especially with proliferation of multi-cores

Better program analyses
– Pointer alias analysis, shared variable detection, …
– Heap shapes and properties

M d l t i t fModular component interfaces
– Required for scaling up to large systems (MLOC)
– Practical difficulties can be addressed by systematic development practices,

but there should be a clear return on invested effort

January 09 VMCAI 09: Model Checking Concurrent Programs 47

