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Abstract--K-Nearest Neighbor is used broadly in text 

classification, but it has one deficiency—computational 

efficiency. In this paper, we propose a heuristic search way to 

find out the k nearest neighbors quickly. Simulated annealing 

algorithm and inverted array are used to help find out the 

expected neighbors. Our experimental results demonstrate a 

significant improvement in classification computational 

efficiency in comparison with the conventional KNN.   

1. INTRODUCTION 

K-Nearest Neighbor is one of the most popular 
algorithms for text categorization [1], especially in the area 
of case base reasoning. Many researchers have found that 
the KNN algorithm achieves very good performance in 
their experiments on different data sets [2] [3]. 

KNN was first proposed by Cover and Hart in 1968. The 
idea of k-Nearest Neighbor algorithm is simple and 
straightforward. To classify a new document, the system 
finds the k nearest neighbors among the training documents, 
and uses the categories of the k nearest neighbors to weight 
the category candidates [1]. One of the drawbacks of KNN 
algorithm is its efficiency. KNN is a lazy categorization, 
and instead of estimating the target function once for the 
entire instance, they delay processing until a new instance 
must be classified and it needs to compare a test instance or 
document with all samples in the training set. In addition, 
the performance of this algorithm greatly depends on two 
factors, that is, a suitable similarity function and an 
appropriate value for the parameter k.  

Although K-nearest neighbor can be applied broadly, it 
has shortcoming mentioned above. Because of 
computational complexity, k-nearest neighbor is seldom 

used in the real-time scenario. In order to improve the 
efficiency of K-nearest neighbor, many methods have been 
proposed which can be divided into two categories.  

One is reducing the number of training sets in 
circumstance of not losing the precision; Zhou proposes a 
fast KNN text classification approach based on pruning the 
training corpus [4]; 

The other is to adopt the fast algorithm with the proof of 
categorization function.  A traditional way to do it is by 
representing the training set as a tree called kD-tree [5] 
which stores a set of points in k-dimensional space, k being 
the number of attributes. This is a binary tree that divides 
the input space with a hyper-plane and then splits each 
partition again, recursively. Then the computation is done 
within this kD-tree. 

Genetic Algorithm (GA) is also used to help K-nearest 
neighbor do classification [6]. Anupam Kumar Nath [7] 
proposed an enhancement of kNNC where GA has been 
applied for effective selection and upgrade of attribute set to 
find out k-Nearest Neighbors.  

In this paper, we adopt a heuristic search way—simulated 
annealing to choose out the k-nearest neighbors of test 
instances quickly, rather than calculating distance of all 
instances in training set.  We do not prune the training 
corpus or upgrade the attribute set. We focus on the 
computation efficiency on the premise of precision.  

II. K-NEAREST NEIGHBOR AND SIMULATED ANNEALING 

A  K-nearest neighbor learning 

K-nearest neighbor algorithm assumes all instances 
correspond to points in the n-dimensional space Rn. The 
nearest neighbors of an instance are defined in terms of the 



standard Euclidean or Cosine distance. More precisely, let 
an arbitrary instance x be described by the feature vector 
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Classification algorithm is defined as: Given a query 
instance xq to be classified, let x1…xk denotes the k 
instances from training set that are nearest to xq. 
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where qx  is a test instance, jx  is one of the neighbors in 

the training set, ( , ) {0,1}j ky x c ∈  indicates whether jx  

belongs to class kc . Equation (2) means that the 

predication will be the class that has the largest number of 
members in the k nearest neighbors. 

The aim of k-nearest neighbors is to get the k highest 
values of all distances between the test instance and the 
other training instances. We can also define it more 
specifically and concretely. 
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Of course we can change it into: 
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From the above formula（4）, we can see that in fact, this 
is a problem of combinatorial optimization and what we 

have to compute instantaneously is 
1
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annealing is a solution method in the field of combinatorial 
optimization based on analogy with the physical process of 
annealing, so we can borrow the idea of simulated 
annealing to improve the computational efficiency. Because 
the storage structure is greatly related with algorithm, we 
introduce it before we give the introduction of simulated 
annealing.  

B storage structure 

In this paper, application background is text classification, 
so instances are those of documents. 

Inverted array is used to store the instances and compute 
the Cosine distance. 

Documents are composed of characters or words, and the 
number of words is very large. Our intuitionistic thinking is 
to store a document in a vector. A good way to improve the 
efficiency is to change the vector into the matrix. But since 
the number of words is very large, the matrix is a sparse 
matrix and it will waste too much space. So the best way is 
to use the linked list and it can save space.  

 

 
Figure 1 representation of the instances 



 
Figure 2 inverted array to represent instances 

Data structure—Feature list stores the features of the 
instances including the English and Chinese characters and 
words. This list is indexed. In this array list there is a pointer 
which points to another data structure called feature arraylist 
which stores the details of feature. Di is used to record the 
number of the document and wn is used to record the weight 
of feature n in Di. 

C simulated annealing 

Simulated annealing (SA) is a random-search technique 
to find a good solution to an optimization problem by trying 
random variations of the current solution. The concept is 
based on the manner in which liquids freeze or metals 
recrystalize in the process of annealing. The origins of the 
algorithm are in statistical mechanics (Metropolis algorithm) 
and it was first presented as a search algorithm for CO 
problems in [8] and [9]. The fundamental idea is to allow 
moves resulting in solutions of worse quality than the 
current solution (uphill moves) in order to escape from local 
minima. The probability of doing such a move is decreased 
during the search. SA forms the basis of an optimization 
technique for combinatorial and other problems. SA 
approaches the global maximization problem similarly to 
using a bouncing ball that can bounce over mountains from 
valley to valley. It begins at a high "temperature" which 

enables the ball to make very high bounces, which enables 
it to bounce over any mountain to access any valley, given 
enough bounces. As the temperature declines the ball 
cannot bounce so high and it can also settle to become 
trapped in relatively small ranges of valleys. A generating 
distribution generates possible valleys or states to be 
explored. An acceptance distribution is also defined, which 
depends on the difference between the function value of the 
present generated valley to be explored and the last saved 
lowest valley. The acceptance distribution decides 
probabilistically whether to stay in a new lower valley or to 
bounce out of it.  

 
Figure 3 SA structure 

⑴ The method and structure of SA 
SA's major advantage over other methods is an ability to 

avoid becoming trapped in local minima. The 
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implementation of the basic SA algorithm is straightforward. 
The above figure 3 shows its structure. 
⑵ Four important elements of SA 

The following elements must be provided: 
1) A representation of possible solutions：to find the k 
nearest neighbors or a stable set of K nearest neighbors.  
2) A generator of random changes in solutions: According 
to the sorted feature weight of test instance, to find the first 
t instances in the training set.  
3) A means of evaluating the problem functions and: to find 
(or calculate) the stable state of candidate k nearest 
neighbors set.  
4) An annealing schedule - an initial temperature and rules 
for lowering it as the search progresses. If unstable state is 
detected, continues to find the t nearest instances and 
calculate the result along the sorted feature weight of test 
instance.  
⑶ Annealing schedule 

Choosing an annealing schedule for practical purposes is 
something of an art. The standard implementation of the SA 
algorithm is one in which homogeneous Markov chains of 
finite length are generated at decreasing temperatures. The 
following parameters should therefore be specified: 
1)  An initial temperature T 
2)  A final temperature T or a stopping criterion 
3)  A length for the Markov chains and 
4)  A rule for decrementing the temperature. 
Initial Temperature 

As for KNN, the initial temperature is that： Firstly to 
find the heaviest feature of test instance, and then get the 
corresponding first K document labels from the inverted 
array, then compute the cosine distance of this test instance 
and all these K documents. This is the first initial 
temperature. 

Final temperature or a stopping criterion is that when 
finding the next K or M document labels from the inverted 
array, compute the cosine distance, if these new cosine 
distances don’t substitute the already existing ones in the 
candidate result set. Then we can conclude that this is the 
final temperature. In another word, the system has found the 
stable state. 

Another important factor is the length for the Markov 
chain. Here we set length of Markov as K. the schedule is 
like that if in the testing state, system finds n constitute, 

then the energy to gain again is that f(n)*Markov. That 
means that the less stable the system is, the more test has to 
be done, which means that it has the opportunity to jump 
out of the trap. 
⑷ The simulated annealing algorithm 
1) Original optimization formulation 
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2) Initializing: 
(1) Figure out all the words or characters of the instances, 

store them in Feature list 
(2) compute the feature’ weight of each instance, store 

them in feature arraylist. Di means the number of the 
instance which contains this feature, and wi means the 
weight of this feature. And sort the feature weight and order 
them. 

(3) Compute the feature’ weight of test instance and store 
them in test instance feature array (see figure 1 and 2).   

(4) Calculate  2
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i
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x
=
∑  of each training instance x, 

where i is denoted as each feature of the instance. 
 3) Computation:  

1. Choose the feature with the highest feature weight 
from the test instance. Then choose out the first k 
instances directed by this feature from the 
inverted array. Compute the Cosine distance 
between the test instance and k instances and 
insert the computing result into the result 
candidate set.  

2. Markov=k; 
3. while (flag) 
4. { 
5. fetch the next highest feature M by its weight of 

the test instance; 
6. fetch each first Markov document labels from the 

feature arraylist according to the feature M; and 
store them into the temp result set; 

7. compute the cosine distance of testing instance 
and those documents which are not contained in 
candidate result set; store the computation result 



in the temp result set 
8. n=count the new cosine distances in temp result 

set which are larger than those in candidate result 
set. 

9. substitute these n document labels and their 
cosine distances to the candidate result set; flag 
=true; 

10. if n=0 then 
11. flag=false; 
12. else 
13. Markov=(lg(n/k*10+0.1))*k;  
14. } 

 III EXPERIMENTS AND DISCUSSION 

A  Corpuses 

The corpuses we used are the two most important 
Chinese Corpuses. One is from Natural Language 
Processing School of Peking University and the other is 
from Sohu, the most important Chinese web portal. 

The first one contains 19,892 Chinese web pages which 
have been resolved by deleting the Html tag. There are 10 
top-categories in the corpus. We evenly divided the corpus 
into three parts: one for training and the other two for test at 
random. In the training set, there are 10000 documents and 
in the testing set there are about 9892 documents.  

The second one we used is downloaded from 
http://www.sogou.com/labs/dl/c.html. Sogou language 
corpus is now a most important open Chinese corpus for 
classification and clustering. What we downloaded is 
SogouC.reduced.20061127.zip about of 17910 documents 
of 48.2M.  

In our experiments, a document is represented by a space 
vector, the dimensions of which correspond to Chinese 
words.  We used the term weighting scheme named by 
information gain. The cosine function is used to compute 
the similarity (or distance) between two documents. 

The experiment environment is: Windows 2003 OS, with 
Intel Pentium 1.4GHz and 256M memory. The application 
is coded under the environment of Visual studio 6.0. 

B Measuring Performance 

To evaluate the effectiveness of category assignments by 
classifiers to documents, the standard precision and recall 
are used here. Precision is defined to be the ratio of correct 

assignments by the system divided by the total number of 
the system’s assignments. Recall is the ratio of correct 
assignments by the system divided by the total number of 
correct assignments.  

 C  Results and Discussion 

Table 1 and 2 gives the experimental results of two KNN 
algorithms with different k and Markov values. KNN-TR 
represents the traditional one, and KNN-SA denotes our 
modified version based on simulated annealing. KNN-TR 
achieved its best performance when k is around 10-25, 
while KNN-SA performed well with the largest Markov. On 
average, the performance of KNN-SA is at least ten times 
faster than that of KNN-TR algorithm. 

From these two tables, we can also see that the different 
corpus has different classification result. Peking corpus has 
better performance than that of Sogou. The reason may lye 
in that Peking corpus has been elaborately chosen by 
experts than Sogou corpus.  

Table 1 Result of Peking corpus (cpu second) 

traditional KNN KNN based on simulated annealing 

K Precision 

(%) 

CPU time Markov Precision 

(%) 

CPU time

100 0.856 62 100 0.84 13 

50 0.873 62 50 0.842 5.8 

35 0.876 62 35 0.81 4.1 

20 0.88 62 20 0.74 2.9 

10 0.904 62 10 0.65 1.2 

5 0.899 62 5 0.46 0.7 

Table 2 Result of Sogou corpus  

traditional KNN KNN based on simulated annealing 

K Precision CPU 

time 

Markov precision CPU 

time 

100 0.67 143 100 0.68 16 

50 0.70 143 50 0.69 6.5 

35 0.677 143 35 0.72 5.6 

25 0.7297 143 25 0.65 4.6 

15 0.69 143 15 0.64 2.3 

5 0.734 143 5 0.53 0.2 

Figure 4 and 5 show that the different category of 
documents has different distinguishing function. IT, sports 
and politics has the higher ability, but more common 
categories has lower ability, such as culture. We have 



distributed the different category evenly, so the number of 
instance is not the key factor influencing the distinguishing 
function. The reason may lie in that features chosen from IT, 
sports and military have the better distinguishing ability. 

 

Figure 4 recall and precision of Peking corpus when k is 10. 

 (From left to right, categories are: computer, artist, economy, environment, 

education, politics, medicine, military, sports, and communication. And 11 

is Micro Average; 12 is Macro Average)  

 
Figure 5 recall and precision of Sogou corpus when Markov is 35. 

 (From left to right, categories are: It, health, economy, sports, tourism, 

education, recruitment, culture, and military. And 11 is Micro Average; 12 

is Macro Average) 

IV CONCLUSION 

In this paper we have proposed a heuristic k Nearest 
Neighbor classification method by using Simulated 
Annealing Algorithm. We also have implemented our newly 
proposed methods of KNN-SA together with the 
conventional one of KNN-TR on real life data set. 
Considering the percentage of correct prediction our 
proposed method has greatly outperformed the conventional 
one in computational efficiency. 

But precision of both KNN-TR and KNN-SA is not high. 
From the different result of two separate corpuses, we know 
that features extraction is a key factor in classification. As 
for Chinese text classification, segmentation is another key 
factor. 

Even though we have tested the method only on Chinese 
text, the method should be universally applicable to 
classification problems for data in other languages.  
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