
A Fast KNN Algorithm Based on Simulated Annealing
Chuanyao Yang1 Yuqin Li1 Chenghong Zhang2 Yunfa Hu1

1 Department of Computing & Information Technology, Fudan University
2 School of Management，Fudan University

No 220 Handan RD., Shanghai, P.R.China, 200433
Sunny.yangchy@gmail.com; li_yuqin@yahoo.com.cn;

chzhang@fudan.edu.cn; yfhu@fudan.edu.cn

Abstract--K-Nearest Neighbor is used broadly in text

classification, but it has one deficiency—computational

efficiency. In this paper, we propose a heuristic search way to

find out the k nearest neighbors quickly. Simulated annealing

algorithm and inverted array are used to help find out the

expected neighbors. Our experimental results demonstrate a

significant improvement in classification computational

efficiency in comparison with the conventional KNN.

1. INTRODUCTION

K-Nearest Neighbor is one of the most popular
algorithms for text categorization [1], especially in the area
of case base reasoning. Many researchers have found that
the KNN algorithm achieves very good performance in
their experiments on different data sets [2] [3].

KNN was first proposed by Cover and Hart in 1968. The
idea of k-Nearest Neighbor algorithm is simple and
straightforward. To classify a new document, the system
finds the k nearest neighbors among the training documents,
and uses the categories of the k nearest neighbors to weight
the category candidates [1]. One of the drawbacks of KNN
algorithm is its efficiency. KNN is a lazy categorization,
and instead of estimating the target function once for the
entire instance, they delay processing until a new instance
must be classified and it needs to compare a test instance or
document with all samples in the training set. In addition,
the performance of this algorithm greatly depends on two
factors, that is, a suitable similarity function and an
appropriate value for the parameter k.

Although K-nearest neighbor can be applied broadly, it
has shortcoming mentioned above. Because of
computational complexity, k-nearest neighbor is seldom

used in the real-time scenario. In order to improve the
efficiency of K-nearest neighbor, many methods have been
proposed which can be divided into two categories.

One is reducing the number of training sets in
circumstance of not losing the precision; Zhou proposes a
fast KNN text classification approach based on pruning the
training corpus [4];

The other is to adopt the fast algorithm with the proof of
categorization function. A traditional way to do it is by
representing the training set as a tree called kD-tree [5]
which stores a set of points in k-dimensional space, k being
the number of attributes. This is a binary tree that divides
the input space with a hyper-plane and then splits each
partition again, recursively. Then the computation is done
within this kD-tree.

Genetic Algorithm (GA) is also used to help K-nearest
neighbor do classification [6]. Anupam Kumar Nath [7]
proposed an enhancement of kNNC where GA has been
applied for effective selection and upgrade of attribute set to
find out k-Nearest Neighbors.

In this paper, we adopt a heuristic search way—simulated
annealing to choose out the k-nearest neighbors of test
instances quickly, rather than calculating distance of all
instances in training set. We do not prune the training
corpus or upgrade the attribute set. We focus on the
computation efficiency on the premise of precision.

II. K-NEAREST NEIGHBOR AND SIMULATED ANNEALING

A K-nearest neighbor learning

K-nearest neighbor algorithm assumes all instances
correspond to points in the n-dimensional space Rn. The
nearest neighbors of an instance are defined in terms of the

standard Euclidean or Cosine distance. More precisely, let
an arbitrary instance x be described by the feature vector

1 2((), (),... ())na x a x a x

where ()ra x denotes the value of the rth attribute of

instance x. Then the distance between two instances ix

and jx is defined to be (,)i jd x x , where

1

2 2

1 1

(,)

n

it jt
t

i j n n

it jt
t t

x x
d x x

x x

=

= =

×
=

∑

∑ ∑
 （1）

Classification algorithm is defined as: Given a query
instance xq to be classified, let x1…xk denotes the k
instances from training set that are nearest to xq.

1
() arg max (,)

k

q j k
i

f x y x c
=

← ∑ (2)

where qx is a test instance, jx is one of the neighbors in

the training set, (,) {0,1}j ky x c ∈ indicates whether jx

belongs to class kc . Equation (2) means that the

predication will be the class that has the largest number of
members in the k nearest neighbors.

The aim of k-nearest neighbors is to get the k highest
values of all distances between the test instance and the
other training instances. We can also define it more
specifically and concretely.

1

2 2

1 1

(,)

n

it jt
t

k i j n n

it jt
t t

x x
Max d x x

x x

=

= =

×
=
∑

∑ ∑
 (3)

Of course we can change it into:

1

2 2

1 1

(,)

n

it jt
t

k i j n n

it jt
t t

x x
Min d x x

x x

=

= =

×
= −

∑

∑ ∑
 (4)

From the above formula（4）, we can see that in fact, this
is a problem of combinatorial optimization and what we

have to compute instantaneously is
1

n

it jt
t

x x
=

×∑ . Simulated

annealing is a solution method in the field of combinatorial
optimization based on analogy with the physical process of
annealing, so we can borrow the idea of simulated
annealing to improve the computational efficiency. Because
the storage structure is greatly related with algorithm, we
introduce it before we give the introduction of simulated
annealing.

B storage structure

In this paper, application background is text classification,
so instances are those of documents.

Inverted array is used to store the instances and compute
the Cosine distance.

Documents are composed of characters or words, and the
number of words is very large. Our intuitionistic thinking is
to store a document in a vector. A good way to improve the
efficiency is to change the vector into the matrix. But since
the number of words is very large, the matrix is a sparse
matrix and it will waste too much space. So the best way is
to use the linked list and it can save space.

Figure 1 representation of the instances

Figure 2 inverted array to represent instances

Data structure—Feature list stores the features of the
instances including the English and Chinese characters and
words. This list is indexed. In this array list there is a pointer
which points to another data structure called feature arraylist
which stores the details of feature. Di is used to record the
number of the document and wn is used to record the weight
of feature n in Di.

C simulated annealing

Simulated annealing (SA) is a random-search technique
to find a good solution to an optimization problem by trying
random variations of the current solution. The concept is
based on the manner in which liquids freeze or metals
recrystalize in the process of annealing. The origins of the
algorithm are in statistical mechanics (Metropolis algorithm)
and it was first presented as a search algorithm for CO
problems in [8] and [9]. The fundamental idea is to allow
moves resulting in solutions of worse quality than the
current solution (uphill moves) in order to escape from local
minima. The probability of doing such a move is decreased
during the search. SA forms the basis of an optimization
technique for combinatorial and other problems. SA
approaches the global maximization problem similarly to
using a bouncing ball that can bounce over mountains from
valley to valley. It begins at a high "temperature" which

enables the ball to make very high bounces, which enables
it to bounce over any mountain to access any valley, given
enough bounces. As the temperature declines the ball
cannot bounce so high and it can also settle to become
trapped in relatively small ranges of valleys. A generating
distribution generates possible valleys or states to be
explored. An acceptance distribution is also defined, which
depends on the difference between the function value of the
present generated valley to be explored and the last saved
lowest valley. The acceptance distribution decides
probabilistically whether to stay in a new lower valley or to
bounce out of it.

Figure 3 SA structure

⑴ The method and structure of SA
SA's major advantage over other methods is an ability to

avoid becoming trapped in local minima. The

Input and Assess Initial Solution

Estimate Initial temperature

Generate New Solution

Assess New Solution

Update Stores

Accept New Solution?

Adjust Temperature?

Terminate Search?

Stop
Yes

No

No

Yes

implementation of the basic SA algorithm is straightforward.
The above figure 3 shows its structure.
⑵ Four important elements of SA

The following elements must be provided:
1) A representation of possible solutions：to find the k
nearest neighbors or a stable set of K nearest neighbors.
2) A generator of random changes in solutions: According
to the sorted feature weight of test instance, to find the first
t instances in the training set.
3) A means of evaluating the problem functions and: to find
(or calculate) the stable state of candidate k nearest
neighbors set.
4) An annealing schedule - an initial temperature and rules
for lowering it as the search progresses. If unstable state is
detected, continues to find the t nearest instances and
calculate the result along the sorted feature weight of test
instance.
⑶ Annealing schedule

Choosing an annealing schedule for practical purposes is
something of an art. The standard implementation of the SA
algorithm is one in which homogeneous Markov chains of
finite length are generated at decreasing temperatures. The
following parameters should therefore be specified:
1) An initial temperature T
2) A final temperature T or a stopping criterion
3) A length for the Markov chains and
4) A rule for decrementing the temperature.
Initial Temperature

As for KNN, the initial temperature is that： Firstly to
find the heaviest feature of test instance, and then get the
corresponding first K document labels from the inverted
array, then compute the cosine distance of this test instance
and all these K documents. This is the first initial
temperature.

Final temperature or a stopping criterion is that when
finding the next K or M document labels from the inverted
array, compute the cosine distance, if these new cosine
distances don’t substitute the already existing ones in the
candidate result set. Then we can conclude that this is the
final temperature. In another word, the system has found the
stable state.

Another important factor is the length for the Markov
chain. Here we set length of Markov as K. the schedule is
like that if in the testing state, system finds n constitute,

then the energy to gain again is that f(n)*Markov. That
means that the less stable the system is, the more test has to
be done, which means that it has the opportunity to jump
out of the trap.
⑷ The simulated annealing algorithm
1) Original optimization formulation

Objective: 1

2 2

1 1

(,)

n

it jt
t

k i j n n

it jt
t t

x x
Max d x x

x x

=

= =

×
=
∑

∑ ∑
 (5)

2) Initializing:
(1) Figure out all the words or characters of the instances,

store them in Feature list
(2) compute the feature’ weight of each instance, store

them in feature arraylist. Di means the number of the
instance which contains this feature, and wi means the
weight of this feature. And sort the feature weight and order
them.

(3) Compute the feature’ weight of test instance and store
them in test instance feature array (see figure 1 and 2).

(4) Calculate 2

1

n

i
t

x
=
∑ of each training instance x,

where i is denoted as each feature of the instance.
 3) Computation:

1. Choose the feature with the highest feature weight
from the test instance. Then choose out the first k
instances directed by this feature from the
inverted array. Compute the Cosine distance
between the test instance and k instances and
insert the computing result into the result
candidate set.

2. Markov=k;
3. while (flag)
4. {
5. fetch the next highest feature M by its weight of

the test instance;
6. fetch each first Markov document labels from the

feature arraylist according to the feature M; and
store them into the temp result set;

7. compute the cosine distance of testing instance
and those documents which are not contained in
candidate result set; store the computation result

in the temp result set
8. n=count the new cosine distances in temp result

set which are larger than those in candidate result
set.

9. substitute these n document labels and their
cosine distances to the candidate result set; flag
=true;

10. if n=0 then
11. flag=false;
12. else
13. Markov=(lg(n/k*10+0.1))*k;
14. }

 III EXPERIMENTS AND DISCUSSION

A Corpuses

The corpuses we used are the two most important
Chinese Corpuses. One is from Natural Language
Processing School of Peking University and the other is
from Sohu, the most important Chinese web portal.

The first one contains 19,892 Chinese web pages which
have been resolved by deleting the Html tag. There are 10
top-categories in the corpus. We evenly divided the corpus
into three parts: one for training and the other two for test at
random. In the training set, there are 10000 documents and
in the testing set there are about 9892 documents.

The second one we used is downloaded from
http://www.sogou.com/labs/dl/c.html. Sogou language
corpus is now a most important open Chinese corpus for
classification and clustering. What we downloaded is
SogouC.reduced.20061127.zip about of 17910 documents
of 48.2M.

In our experiments, a document is represented by a space
vector, the dimensions of which correspond to Chinese
words. We used the term weighting scheme named by
information gain. The cosine function is used to compute
the similarity (or distance) between two documents.

The experiment environment is: Windows 2003 OS, with
Intel Pentium 1.4GHz and 256M memory. The application
is coded under the environment of Visual studio 6.0.

B Measuring Performance

To evaluate the effectiveness of category assignments by
classifiers to documents, the standard precision and recall
are used here. Precision is defined to be the ratio of correct

assignments by the system divided by the total number of
the system’s assignments. Recall is the ratio of correct
assignments by the system divided by the total number of
correct assignments.

 C Results and Discussion

Table 1 and 2 gives the experimental results of two KNN
algorithms with different k and Markov values. KNN-TR
represents the traditional one, and KNN-SA denotes our
modified version based on simulated annealing. KNN-TR
achieved its best performance when k is around 10-25,
while KNN-SA performed well with the largest Markov. On
average, the performance of KNN-SA is at least ten times
faster than that of KNN-TR algorithm.

From these two tables, we can also see that the different
corpus has different classification result. Peking corpus has
better performance than that of Sogou. The reason may lye
in that Peking corpus has been elaborately chosen by
experts than Sogou corpus.

Table 1 Result of Peking corpus (cpu second)

traditional KNN KNN based on simulated annealing

K Precision

(%)

CPU time Markov Precision

(%)

CPU time

100 0.856 62 100 0.84 13

50 0.873 62 50 0.842 5.8

35 0.876 62 35 0.81 4.1

20 0.88 62 20 0.74 2.9

10 0.904 62 10 0.65 1.2

5 0.899 62 5 0.46 0.7

Table 2 Result of Sogou corpus

traditional KNN KNN based on simulated annealing

K Precision CPU

time

Markov precision CPU

time

100 0.67 143 100 0.68 16

50 0.70 143 50 0.69 6.5

35 0.677 143 35 0.72 5.6

25 0.7297 143 25 0.65 4.6

15 0.69 143 15 0.64 2.3

5 0.734 143 5 0.53 0.2

Figure 4 and 5 show that the different category of
documents has different distinguishing function. IT, sports
and politics has the higher ability, but more common
categories has lower ability, such as culture. We have

distributed the different category evenly, so the number of
instance is not the key factor influencing the distinguishing
function. The reason may lie in that features chosen from IT,
sports and military have the better distinguishing ability.

Figure 4 recall and precision of Peking corpus when k is 10.

 (From left to right, categories are: computer, artist, economy, environment,

education, politics, medicine, military, sports, and communication. And 11

is Micro Average; 12 is Macro Average)

Figure 5 recall and precision of Sogou corpus when Markov is 35.

 (From left to right, categories are: It, health, economy, sports, tourism,

education, recruitment, culture, and military. And 11 is Micro Average; 12

is Macro Average)

IV CONCLUSION

In this paper we have proposed a heuristic k Nearest
Neighbor classification method by using Simulated
Annealing Algorithm. We also have implemented our newly
proposed methods of KNN-SA together with the
conventional one of KNN-TR on real life data set.
Considering the percentage of correct prediction our
proposed method has greatly outperformed the conventional
one in computational efficiency.

But precision of both KNN-TR and KNN-SA is not high.
From the different result of two separate corpuses, we know
that features extraction is a key factor in classification. As
for Chinese text classification, segmentation is another key
factor.

Even though we have tested the method only on Chinese
text, the method should be universally applicable to
classification problems for data in other languages.

Acknowledgments: This paper is supported by the
National Natural Science Foundation of China (No.
70471011) and the Shanghai Natural Science Foundation
(No. 05ZR14019).

REFERENCE

[1] Manning C.D. and Schutze H., 1999 Foundations of Statistical Natural

Language Processing [M] Cambridge: Mit Press.

[2] Yang Y. and Liu X. 1999 A Re-examination of Text Categorization

Methods [A]. In: Proceedings of 22nd Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval [C].

42-49

[3] Li Baoli, Chen Yuzhou, and Yu Shiwen, 2002. A Comparative Study

on Automatic Categorization Methods for Chinese Search Engine [A] In:

Proceedings of the Eighth Joint International Computer Conference [C].

Hangzhou: Zhejiang University Press, 117-120.

[4] Zhou Shuigeng, Ling Tokwang, Guan Jihong. Fast text classification: a

training corpus pruning based approach. Proceedings of Data-base

Systems for Advanced Applications Kyoto, Japan: IEEE Computer

Society. 2003:127-136

[5] Ian H. Witten, Eibe Frank. Data Mining: Practical Machine Learning

Tools and Techniques (Second Edition). Elsevier 2005:129-135

[6] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and

Machine Learning, Addison Wesley, Boston, Massachusetts, 1989.

[7] Anupam Kumar Nath, Syed M. Rahman, Akram Salah. An

Enhancement of k-Nearest Neighbor Classification Using Genetic

Algorithm MICS 2005 held in North Dakota

[8] Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P., Optimization by

Simulated Annealing, Science, Volume 220, Number 4598, 13 May

1983, pp. 671-680.

[9] Cerny, V., Thermodynamical Approach to the Traveling Salesman

Problem: An Efficient Simulation Algorithm, J. Opt. Theory Appl., 45,

1, 41-51, 1985 .

