Lock-free Parallel Programming in an Event-driven and
Side-effecting World

Alexander Herz

Computer Science

Technische Universitdit Miinchen
Boltzmannstr. 3

85748 Garching

Germany

Date: 12.02.2010
Supervisor: Prof. H. Seidl

Abstract

Parallelization of software is hard because multiple problems must be solved simultaneously to be successful. A
sequential program must be decomposed into independent tasks, the granularity of the individual tasks must be suffi-
ciently large and the side-effects inside these tasks must be correctly synchronized in order to preserve the semantics
of the program. Pure functional languages like multi-core Haskell [1]] trade the complexity of synchronization for fine
granularity tasks, the burden of synchronizing side-effects like 1/0 explicitly and the inability to mix event-driven
and pure program parts. While simplifying the development of parallel software, performance is not comparable to
well crafted imperative implementations. To resolve these problems the non-deterministic, implicitly parallel langua-
ge FunkyImp is introduced. Its semantics shall enable the user to write lock-free programs which’s semantics are
invariant under parallelization and produce large task grain sizes without undue constraints on the parallel execution
of side-effects or the processing of events.

Introduction

Ever since distributed computing became available, researchers have striven to alleviate the problems inherent to the
parallelization of programs. Among the most proliferated utilities in the scientific community are the OpenMP [2]
library for SMP systems and the MPI [3] library for distributed systems. Both libraries provide portable support for
thread coordination and communication. The sole responsibility of partitioning the program into parallel sections
and providing correct synchronization is still left with the programmer unless a simple parallel for loop is to be
implemented. Algorithmic skeletons, as provided e.g. by Intel’s TBB [4]], support a richer set of parallel patterns
and data structures while abstracting from the low level thread management. Parallelizing non-trivial programs using
TBB can be very complicated [5] as the programmer is forced to compose the complete software using the available
skeletons. On the other hand, several languages have been introduced to support new parallel programming models.
PGAS languages like UPC [6] expose a uniform memory model to the programmer. Although the management of
the possibly clustered memory is hidden from the user, the programmer is still responsible for managing memory
access latency and synchronization issues. Pure functional languages like Haskel [[7] have been modified for parallel
programming in order to exploit the absence of side-effects thus completely removing synchronization issues inside
pure functions. Haskell’s laziness requires the programmer to take into account many subtle evaluation properties of
the language [8, 9] in order to achieve any actual speed up. Haskell separates side-effecting expressions from the
pure part of the program using monads [10]. This has several awkward consequences for parallelization. The code
inside a monad (especially the I/O monad) represents an imperative and possibly side-effecting sub-language which
can be parallelized only using traditional methods and explicit synchronization reintroducing all problems attached
to this method. Parallel execution of Haskell programs is commonly based on (lazy) parallel graph reduction [11]



which together with the lazy evaluation yields rather small task grain sizes and hence unimpressive performance
when compared to imperative implementations [12]]. Since CPU clock speeds have ceased to scale and multi-core
processors are the norm, the industry has been eager to find new ways to simplify parallel programming. Increased
research activity on verification of parallel programs in terms of race detection through abstract interpretation and
trace based analysis highlights the need for improved methods [[13| [14].

Within the last year we have developed the semantics for the new parallel language Funkylmp. Funkylmp’s single
assignment core inherits the side-effect free properties of a pure language while the linear type system [15] allows
to interleave side-effecting external functions like I/O with the pure statements. Hence, FunkyImp allows to perform
implicit parallelization of pure and side-effecting statements without explicit synchronization. The strict evaluation
semantics of FunkyImp enables the adaption of the task grain size and the exploitation of high level parallelism
without the need to handle possibly diverging lazy terms. The performance of the strict program evaluation becomes
more predictable and can be mapped onto standard hardware more easily than a parallel graph reduction. Furthermore,
the introduction of event objects, actor like objects with reduced message send and receive guarantees, allows to
perform push and pull based event processing inside the language while retaining semantic invariance under reordering
(or parallel execution) of functions without data-dependencies. This feature overcomes the need to do functional
reactive programming [[16]] and allows to implement non-deterministic parallel algorithms. Finally, the language was
enhanced by functional data-parallel array processing capabilities.

Although there is a lot of literature available, praising the success of pure functional languages, non of these languages
has seen wide adoption for parallel programming. Often, these languages were not designed from the ground up to be
suitable for parallel execution but modified versions of sequential languages, impaired by their legacy.

Literatur

[1] Simon Marlow, Simon Peyton Jones, and Satnam Singh. Runtime support for multicore haskell. In Procee-
dings of the 14th ACM SIGPLAN international conference on Functional programming - ICFP 09, page 65,
Edinburgh, Scotland, 2009.

[2] L. Dagum and R. Menon. OpenMP: an industry standard API for shared-memory programming. Computational
Science & Engineering, IEEE, 5(1):46-55, 2002.

[3] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable parallel programming with the message passing
interface. 1999.

[4] J. Reinders. Intel threading building blocks. O’Reilly, 2007.
[5] Deepankar Bairagi Liang T. Chen. Developing Parallel Programs — A Discussion of Popular Models.

[6] C. et al. Coarfa. An evaluation of global address space languages: Co-Array Fortran and Unified Parallel C. In

Proceedings of the tenth ACM SIGPLAN symposium on Principles and practice of parallel programming, pages
36-47. ACM, 2005.

[7]1 S. Marlow, S. Peyton Jones, and S. Singh. Runtime support for multicore haskell. ACM SIGPLAN Notices,
44(9):65-78, 2009.

[8] T. Uustalu and V. Vene. Advanced Functional Programming. Springer-Verlag Berlin/Heidelberg, 2005.

[9] P. W. TRINDER, H.-W. LOIDL, and R. F. POINTON. Parallel and distributed haskells. Journal of Functional
Programming, 12(4-5):469-510, 2002.

[10] M.P. Jones and P. Hudak. Implicit and explicit parallel programming in Haskell. Disponivel por FTP em nebula.
systemsz. cs. yale. edu/pub/yale-fp/reports/RR-982. ps. Z (julho de 1999).

[11] P.W. Trinder, K. Hammond, JS Mattson Jr, AS Partridge, and SL Peyton Jones. GUM: a portable parallel
implementation of Haskell. ACM SIGPLAN Notices, 31(5):79-88, 1996.

[12] H.-W. et al. Loidl. Comparing parallel functional languages: Programming and performance. Higher-Order and
Symbolic Computation, 16(3):203-251, 2003.



[13] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur. Multithreaded Java program test generation. IBM Systems
Journal, 41(1):111-125, 2010.

[14] V. Vojdani and V. Vene. Goblint: Path-sensitive data race analysis. In Annales Univ. Sci. Budapest., Sect. Comp,
volume 30, pages 141-155, 20009.

[15] P. Wadler. Linear types can change the world, volume 2, page 347-359. 1990.
[16] P. Hudak. Functional Reactive Programming. Programming Languages and Systems, pages 67-67, 1999.



